— у = ƒ(x): Эйлер стал первым ученым, использовавшим современное понятие функции, связав заданное значение х с получившимся значением у посредством соотношения, названного ƒ. Область определения и значений ƒ были четко обозначены. Функция появляется уже в 1734-1735 годах в Commentarii academiae scientiarum imperialis Petropolitanae — первом журнале Петербургской академии наук. И хотя современное понятие функции немного отличается от того, которое имел в виду Эйлер, нельзя не признать, что он сделал огромный шаг вперед в том, что касается ясности определений и описания.
— Σ (сигма): Эйлер выбрал эту букву для обозначения суммы последовательности чисел, подчиняющейся какому-либо правилу, которое записывается над или под символом. В общем случае сумма элементов х, где i — "счетчик" слагаемых, идущих от m до n, записывается так:
Σ>i=m>nx>i = x>m + x>m+1 + x>m+2 + ... + x>n-1 + x>n.
Сигма — греческий аналог буквы "с", с которой начинается слово "сумма", поэтому ее использование кажется вполне логичным. В течение жизни Эйлер вычислил сотни таких последовательностей, многие из которых были бесконечными. При n = ∞ последовательность называется рядом. Возможно, самая знаменитая в своей простоте последовательность Эйлера — это последовательность из Базельской задачи, которую он вычислил в 1735 году, на пике своего математического творчества (мы поговорим о ней подробней в следующей главе):
Σ>n=1>∞1/n>2 = π>2/6.
Никто не ожидал, что в сумме этой последовательности будет задействовано число π, и его появление внесло настоящую неразбериху в умы ученых.
— Заглавные и строчные буквы: в любом треугольнике стороны обозначаются строчными буквами, а соответствующие углы — теми же буквами, но заглавными (рисунок 1).
РИС. 1
РИС . 2
РИС 3
Аналогичным образом буквами R и г обозначаются соответственно радиусы описанной (рисунок 2) и вписанной окружностей (рисунок 3).
— Использование первых букв алфавита (обычно строчных) — а, b, с, d — для обозначения известных величин в уравнениях, и последних — х, у, z, v — для неизвестных величин.
— Сокращенные латинские формы sin, cos, tang, cot, sec и cosec Эйлер впервые использовал в 1748 году в своей книге "Введение в анализ бесконечно малых" для обозначения тригонометрических функций. Затем они были адаптированы к разным языкам, хотя сейчас фактически универсальным является их английский вариант: sin х, cos х, tan х (в русской традиции tg x), cot х (или ctg х), sec х и cosec х.
— Обозначение для конечных разностей: это вычислительный инструмент, немного похожий на производные. Он не использует понятие предела и так называемые бесконечно малые. Конечные разности встречаются уже у Ньютона (1642-1727), Джеймса Грегори (1638-1675) и Колина Маклорена (1698-1746) и позволяют вычислять неизвестные многочлены на основе их значений, а также интерполировать и изучать последовательности и ряды. Изобретение компьютеров сделало их еще полезнее. Эйлер посвятил много сил изучению конечных разностей. Их обозначения, которые сегодня встречаются в книгах, принадлежат ему. В самом простом случае для последовательности {u