До предела чисел. Эйлер. Математический анализ (Наварро) - страница 23

Однако не нужно далеко ходить, чтобы обнаружить γ. Если мы начнем собирать наклейки, прилагающиеся к жвачкам или шоколадкам, то наше хобби будет совершенно эйлеровским. Если в коллекции всего n наклеек, нам придется купить примерно N товаров, чтобы собрать их все:

N = n(1 + 1/2 + 1/3 + ... + 1/n).


ЛОРЕНЦО МАСКЕРОНИ

Первым призванием Лоренцо Маске- рони, итальянского священника и математика (1750-1800), была поэзия.

Он не был горячим сторонником ни одной из существовавших тогда политических партий, но в общем его можно было охарактеризовать как франкофила. Поэтому в 1797 году его назначили депутатом в Милане, а затем отправили в Париж для разработки новой десятичной метрической системы вместе с Лежандром. Маске- рони больше не смог вернуться в Милан, оккупированный австрийскими войсками, и умер на следующий год.

В 1797 году он опубликовал свой шедевр в стихах — "Геометрия циркуля", — посвященный его другу Наполеону, который тоже увлекался математикой, о чем свидетельствует теорема, названная его именем.

В этой работе Маскерони доказал, что строгое требование древних греков делать геометрические построения только с помощью линейки и циркуля не такое уж обязательное: достаточно одного циркуля. Этот тезис, сегодня кажущийся нам очевидным, был удивительным для того времени. Первым это открытие сделал и опубликовал в Euclides Danicus ("Датский Евклид") в 1672 году датский ученый Георг Мор (1640-1697), но Маскерони об этом не знал. Свое право на бессмертие в математике Маскерони завоевал с помощью Эйлера своей книгой Adnotationes ad calculum integrate Euleri ("Заметки к интегральному исчислению Эйлера"), в которой нет существенных открытий, но содержится знаменитая постоянная γ. С этого момента у стала называться постоянной Эйлера — Маскерони.

В книге Маскерони содержится знаменитая задача Наполеона (считается, что сам Наполеон предложил ее математику). Она состоит в том, чтобы в данной окружности определить вершины квадрата, используя только циркуль.


Если мы попробуем решить эту задачу простым сложением, а наклеек достаточно много, то на это уйдет слишком много времени, и ошибок не избежать, даже используя калькулятор. Лучше применить способ Эйлера и сложить только два слагаемых:

1 + 1/2 + 1/3 + ... + 1/n = γ + ln n.


ПОСТОЯННАЯ у И ПРОСТЫЕ ЧИСЛА

Постоянная у встречается гораздо реже, чем я или е. Несложно найти формулу, которая связывает все три постоянные:


Сам Эйлер тоже нашел взаимосвязи между у и дзета-функцией:


Существуют также формулы, связывающие напрямую ус простыми числами, как, например, формула Франца Мертенса (1840-1927):