.
Другие функциональные схемы, реализующие функцию ИЛИ, приводятся ниже.
Рис. 12.4.Пример осуществления функции ИЛИ (а) и условное графическое обозначение элемента ИЛИ (б)
Что такое операция отрицания?
Исходим из утверждения, что х ложно, выражаемого также сокращенно «не х» и записываемого следующим образом: z = х¯. Это утверждение правильно только тогда, когда х = 0. Следовательно, имеются два случая (табл. 12.4).
Как реализовать операцию отрицания?
Операция отрицания или инверсии, называемая также функцией НЕ или элементом типа НЕ, осуществляется в виде схемы, изменяющей логическое значение входного сигнала на противоположное, например схемы, дающей на выходе сигнал 1, когда на входе 0, и наоборот. Такую функцию можно реализовать, например, с помощью усилителя, инвертирующего фазу сигнала. Графическое изображение элемента типа НЕ представлено на рис. 12.5.
Рис. 12.5.Условное графическое обозначение элемента НЕ
Что такое элемент типа ИЛИ — НЕ?
Это логический элемент[26], реализующий отрицание логического сложения (функция Пирса) или, что в конечном результате равнозначно, реализующий произведение отрицаний; запишем это следующим образом:
Следовательно, это элемент, представляющий собой соединение двух функций, отсюда название ИЛИ — НЕ. Элемент ИЛИ — НЕ дает на выходе единицу тогда и Только тогда, когда на обоих входах присутствует сигнал 0. Это можно представить в виде табл. 12.5.
Графическое изображение элемента типа ИЛИ — НЕ показано на рис. 12.6. Как следует из записи функции, элемент ИЛИ — НЕ можно реализовать соединением элементов ИЛИ и НЕ либо соединением двух элементов НЕ с элементом И (рис. 12.7). Более того, можно показать, что при использовании элементов ИЛИ — НЕ удается реализовать любую переключающую функцию. Примеры практических решений элементов типа ИЛИ — НЕ приведены на рис. 12.10, в, 12.11.
Рис. 12.6.Условное графическое обозначение элемента ИЛИ — НЕ
Рис. 12.7.Функция И при использовании элементов типа ИЛИ — НЕ
Что такое элемент И — НЕ?
Это элемент, реализующий отрицание логического умножения (функцию Шеффера) или, что равнозначно в конечном результате, сумме отрицаний. Запишем эту функцию следующим образом:
Следовательно, это логический элемент, представляющий собой соединение двух функций, отсюда название И — НЕ. Из выражения следует, что элемент И — НЕ имеет на выходе сигнал 0 тогда и только тогда, когда оба входных сигнала имеют значения 1. Это можно свести в табл. 12.6.
Графическое изображение элемента И — НЕ представлено на рис. 12.8. Как следует из записи функции, элемент И — НЕ можно реализовать, соединив элемент И с элементом НЕ или два элемента НЕ с элементом ИЛИ. Применение элементов И — НЕ позволяет реализовать любые переключающие функции. Пример практического решения элемента И — НЕ приведен на рис. 12.10.