Думай как инженер. Как превращать проблемы в возможности (Мадхаван) - страница 23

[3]. Даже малейшее изменение (один оранжевый дорожный конус) может оказать непредвиденное воздействие («пробка» на автомагистрали) на систему систем, частично состоящую из дорог.

На эту тему весьма показательно высказался один из изобретателей интернета, Винтон Серф. Однажды Серф пытался засыпать черный перец в мельницу через воронку. «Несколько горошин попали внутрь, а потом застряли. Если бы я бросал их туда по одной, то проблемы не возникло бы, – резонно замечает Серф. – Но я засыпал в воронку несколько горошин, и в данном случае эмерджентным свойством стал затор».

Для оптимизации полезно иметь общее представление о сложных, широкомасштабных эффектах (например, изменение поведения), которые проистекают из простых правил (плата за въезд в районы с пробками). «Дело в том, что одна горошина перца не создаст затора, – добавляет Серф. – А самое интересное, что в горошине перца мало что может объяснить ее свойства, ведущие к образованию пробок, разве что тот факт, что причина – в трении».

* * *

Любой может заявить, что способен что-то оптимизировать, но слова – это одно, а практика – совсем другое. Оптимизация сродни посещениям спортзала, когда вы увеличиваете количество силовых тренировок. Как получить наилучшие результаты от тренировки в кратчайший срок? Как постоянно что-то улучшать?

Оптимизация состоит из двух основных компонентов. Первый – это цель, направленная на максимизацию или минимизацию выходной переменной, которая обычно зависит от чего-либо еще. Целью оптимизации Грибоваля было нанести максимальный урон противнику, а более широкой задачей – выиграть войну. Оптимизация также включает какое-нибудь ограничение, состоящее из лимитирующих факторов, воздействию которых подвергается цель. Исследователи операций, применяющие модели и изучающие способы улучшения эффективности, сочли бы цель Грибоваля классической «задачей на целеполагание» и разработали бы для нее алгоритм. Как Грибоваль, действуя в условиях ограниченного времени и ресурсов, мог бы найти набор инструментов (или их сочетание) и распределить их оптимальным образом для достижения своей цели?

Инженеры применяют разнообразные методы моделирования, чтобы получить приблизительные репрезентации[4] реальности, которые по определению не являются точными. Есть два основных вида моделей: имплицитные[5] и эксплицитные[6]. В имплицитных моделях, согласно описанию Джошуа Эпштейна, профессора Университета Джонса Хопкинса, «предположения скрыты, внутренняя согласованность не проверена, их логические последствия неизвестны, как и их соответствие данным». В связи с этим, «когда вы закрываете глаза и представляете себе распространение эпидемии или какой-либо другой динамический процесс в обществе, то применяете