Черные дыры и Вселенная (Новиков) - страница 6

А. Эйнштейн показал, что для таких полей теория тяготения Ньютона неприменима, и создал новую теорию, справедливую для сверхсильных, а также для быстроменяющихся полей (для которых ньютоновская теория также неприменима!), и назвал ее общей теорией относительности. Именно выводами этой теории надо пользоваться для доказательства возможности существования черных дыр и для изучения их свойств.

Общая теория относительности — это изумительная теория. Она настолько глубока и стройна, что вызывает чувство эстетического наслаждения у всякого, кто знакомится с ней. Советские физики Л. Ландау и Е. Лифшиц в своем учебнике «Теория поля» назвали ее «самой красивой из всех существующих физических теорий». Немецкий физик Макс Борн сказал об открытии теории относительности: «Я восхищаюсь им как творением искусства». А советский физик В. Гинзбург писал, что она вызывает «…чувство… родственное тому, которое испытывают, глядя на самые выдающиеся шедевры живописи, скульптуры или архитектуры».

Многочисленные попытки популярного изложения теории Эйнштейна, конечно, могут дать общее впечатление о ней. Но, честно говоря, оно столь же мало похоже на восторг от познания самой теории, как знакомство с репродукцией «Сикстинской мадонны» отличается от переживания, возникающего при рассмотрении подлинника, созданного гением Рафаэля.

И тем не менее, когда нет возможности любования подлинником, можно (и нужно!) знакомиться с доступными репродукциями, лучше хорошими (а бывают всякие).

Для понимания невероятных свойств черных дыр нам необходимо сказать кратко о некоторых следствиях общей теории относительности Эйнштейна.


Гравитационный радиус

Чем же отличается теория тяготения Эйнштейна от теории Ньютона? Начнем с простейшего случая. Предположим, что мы находимся на поверхности сферической невращающейся планеты и измеряем силу притяжения этой планетой какого-либо тела с помощью пружинных весов. Мы знаем, что согласно закону Ньютона эта сила пропорциональна произведению массы планеты на массу тела и обратно пропорциональна квадрату радиуса планеты. Радиус планеты можно определить, например, измеряя длину ее экватора и деля на 2π.

А что говорит о силе притяжения теория Эйнштейна? Согласно ей сила будет чуточку больше, чем вычисленная по формуле Ньютона. Мы потом уточним, что значит это «чуточку больше».

Представим себе теперь, что мы можем постепенно уменьшать радиус планеты, сжимая ее и сохраняя при этом ее полную массу. Сила тяготения будет нарастать (ведь радиус уменьшается). По Ньютону, при сжатии вдвое сила возрастает вчетверо. По Эйнштейну, возрастание силы опять же будет происходить чуточку быстрее. Чем меньше радиус планеты, тем больше это отличие.