Черные дыры и Вселенная (Новиков) - страница 8

Так считалось в науке и во времена Аристотеля, и во времена И. Ньютона, и позже — вплоть до А. Эйнштейна. Вот что пишет Аристотель в своей книге «Физика»: «Время, протекающее в двух подобных и одновременных движениях, одно и то же. Если бы оба промежутка времени не протекали одновременно, они все-таки были бы одинаковы… Следовательно, движения могут быть разные и независимые друг от друга. И в том и в другом случае время абсолютно одно и то же».

Еще выразительнее писал И. Ньютон, считая, что говорит об очевидном: «Абсолютное, истинное, математическое время, взятое само по себе, без отношения к какому-нибудь телу, протекает единообразно, соответственно своей собственной природе».

Догадки о том, что представления об абсолютном времени отнюдь не столь очевидны, иногда высказывались и в давние времена. Так, Лукреций Кар в I веке до нашей эры писал в поэме «О природе вещей»: «Время существует не само по себе… Нельзя понимать время само по себе, независимо от состояния покоя и движения тел».

Но только А. Эйнштейн доказал, что никакого абсолютного времени нет. Течение времени зависит от движения и, что сейчас для нас особенно важно, от поля тяготения. В сильном поле тяготения все процессы, абсолютно все, будучи самой разной природы, замедляются для стороннего наблюдателя. Это и значит, что время — то есть то общее, что присуще всем процессам, — замедляется.

Замедление это обычно невелико. Так, на поверхности Земли время протекает медленнее, чем в далеком космосе, всего на ту же одну миллиардную часть, как и в случае с вычислением силы тяготения.

Хочется особенно подчеркнуть, что такое ничтожное замедление времени в поле тяготения Земли непосредственно измерено. Измерено замедление времени и в поле тяготения звезд, хотя обычно там оно тоже крайне мало. В очень сильном поле тяготения замедление заметно больше и становится бесконечно большим, когда радиус тела сравнивается с гравитационным.

Второй важный вывод теории Эйнштейна состоит в том, что в сильном поле тяготения меняются геометрические свойства пространства. Эвклидова геометрия, столь нам привычная, оказывается уже несправедливой. Это означает, например, что сумма углов в треугольнике не равна двум прямым углам, а длина окружности не равна расстоянию ее от центра, умноженному на 2π. Свойства обычных геометрических фигур становятся такими же, как будто они начерчены не на плоскости, а на искривленной поверхности. Поэтому и говорят, что пространство «искривляется» в гравитационном поле. Разумеется, это искривление заметно только в сильном поле тяготения, если размер тела приближается к его гравитационному радиусу.