3. Излучение. Волны. Кванты (Фейнман) - страница 48

остается постоянной (пусть nj =Ф), а число n и фаза j стремятся соответственно к бесконечности и нулю. Теперь значение j так мало, что sinj=j, и если учесть также, что n>2I>0 есть интенсивность в центре максимума I>m, то мы получим

(30.8)

На фиг. 30.2 показан ход этой предельной зависимости.

В данном случае дифракционная картина в общих чертах получается такой же, как и для конечного промежутка d>l, те же боковые максимумы, нет только максимумов высших по­рядков. Когда все рассеиватели находятся в фазе, возникает максимум в направлении q>вых =0 и минимум при D =l, в точ­ности как для конечных d и n.Таким образом, оказывается воз­можным рассмотреть непрерывное распределение рассеивателей или осцилляторов, используя интегралы вместо сумм.

Для примера возьмем длинную линию, составленную из ос­цилляторов, которые колеблются вдоль нее (фиг. 30.5). Такое устройство дает максимальную интенсивность в направлении, перпендикулярном нити. Кверху и книзу от экваториальной плоскости имеется небольшая интенсивность, но она очень мала. Пользуясь этим результатом, перейдем к более сложному устрой­ству. Предположим, у нас имеется целый набор нитей, каждая из которых излучает в экваториальной плоскости. Если мы на­ходимся в центральной плоскости, перпендикулярной всем проволокам, интенсивность излучения набора длинных линий в разных направлениях определяется так же, как и в случае бесконечно коротких линий,— нужно сложить вклады от всех длинных проволок.



Фиг. 30.5. Распределение интен­сивности излучения непрерывной линии осцилляторов имеет высокий центральный максимум и много­численные слабые боковые максиму­мы.

Вот почему вместо крошечных решеток — антенн, которые мы рассматривали, можно было бы использо­вать решетки с длинными и узкими щелями. Каждая из длинных щелей излучает в своем собственном направлении не вверх и не вниз, а только перпендикулярно щели, и, поставив их рядом друг с другом в горизонтальной плоскости, мы получим интер­ференцию.

Таким образом, можно создать еще более сложные устрой­ства, размещая рассеиватели по линии, в плоскости или в про­странстве. Сначала мы располагали рассеиватели на линии, а затем проанализировали случай, когда они заполняют полосу; для получения ответа каждый раз нужно было просуммировать вклады отдельных рассеивателей. Последний принцип справед­лив во всех случаях.

§ 3. Разрешающая способность дифракционной решетки

Теперь мы способны понять еще ряд интересных явлений. Например, попробуем использовать решетку для определения длины волны света. На экране изображение щели развертывает­ся в целый спектр линий, поэтому с помощью дифракционной решетки можно разделить свет по составляющим его длинам волн.