3. Гликолиз → глюкозофосфат → 2 молекулы молочной кислоты + Q (гликогемолиз)
В результате этой реакции происходит распад глюкозы и расщепление глюкозофосфата до молочной кислоты с выделением энергии, которая идет на ресинтез АТФ и креатинфосфата.
Для дальнейших реакций необходимо наличие кислорода – начинается аэробная фаза, во время которой происходит распад молочной кислоты до углекислого газа (СО>2) и воды (Н>2О):
4. Молочная кислота → СО2 + H2O + 700 ккал
Освободившаяся энергия идет на ресинтез молочной кислоты до глюкозы и гликогена, а также – на восстановление АТФ и креатинфосфорной кислоты.
Запас АТФ в скелетных мышцах обеспечивает всего лишь 10 одиночных сокращений. При максимальном мышечном сокращении имеющихся в тканях запасов АТФ достаточно только на одну секунду. Энергия креатинфосфата, концентрация которого в 3–8 раз больше, чем АТФ, может поддержать такое сокращение в течение еще нескольких секунд. При максимальном сокращении на протяжении нескольких секунд абсолютно необходим анаэробный гликолиз, в котором используются запасы гликогена. Ресинтез гликогена из образующейся при этом молочной кислоты возможен лишь в аэробных условиях, поэтому при работе мышц так необходим кислород. При его отсутствии нарушается ресинтез гликогена и запасы углеводов быстро истощаются. Процесс расслабления мышцы связан с обратным поступлением Са>2+ в саркоплазматический ретикулум [59].
Таким образом, механизм мышечного сокращения сопряжен с расходованием энергетических ресурсов. Истощение данных ресурсов приводит к проявлению ряда специфических физиологических состояний организма, о чем речь пойдет далее.
? Контрольные вопросы и задания
1. Расскажите о строении сократительного аппарата мышц.
2. Раскройте механизм мышечного сокращения.
3. Дайте общую характеристику механизмам потребления энергии при мышечном сокращении.