Кому нужна математика? Понятная книга о том, как устроен цифровой мир (Литвак, Райгородский) - страница 10


способов.

Это число называется двадцать пять факториал и обозначается «25!». Насколько оно велико? Если взять современный процессор с тактовой частотой 2 ГГц (2 млрд операций в секунду), то для выполнения такого количества операций ему понадобится 245 млн лет! А на то, чтобы просчитать все варианты, с прибылью и убытками, да еще и перемещать информацию в памяти компьютера, – и того больше. А ведь задачка казалась совсем простой, всего один прибор, всего 25 заданий. Не сравнить с серьезным современным производством.

Такое явление называется проклятием размерности. Даже при скромном количестве вводных данных степень свободы в выборе решения колоссальна. Перебрать все варианты просто невозможно. Значит, понадобятся другие подходы, более умные и нетривиальные, и именно для этого нужна математика.

Для некоторых задач удается найти гарантированно лучший ответ относительно быстро. Но для целого разряда так называемых NP-трудных задач, как, например, упомянутая выше задача об упаковке, сложно придумать метод, который работал бы намного быстрее, чем тривиальный полный перебор всех вариантов. Удастся ли когда-нибудь? Это открытый вопрос, но большинство ученых считают, что нет, потому что таких методов просто не существует. Многие практические задачи NP-трудные. В этом случае математики стремятся к быстрым и «почти» оптимальным решениям. А на практике приходится мириться с тем, что ответ достаточно хороший, но не всегда самый выгодный из возможных.

Разных методик для разных задач придумано множество. Мы расскажем о линейном программировании. Это мощная и уже ставшая классической теория, которая невероятно успешно применяется на практике.

Линейное программирование

Как возникают задачи линейного программирования, мы объясним на еще одном простом примере.

Допустим, у нас есть два склада: на северном и на южном конце города. В офис поступили заказы от двух клиентов. Клиент А заказал 60 листов железа, а клиент Б – 40 листов. На южном складе у нас в наличии 70 листов железа, а на северном – 35, то есть общего запаса хватает. Но мы хотим свести расходы на доставку к минимуму. Цены доставки приведены в табл. 2.1.


Таблица 2.1. Пример цен доставки


Спрашивается: сколько листов отправить клиентам А и Б с южного склада, а сколько – с северного?

Все было бы просто, если бы мы могли доставить весь товар с «дешевого» южного склада. Но, к сожалению, там всего 70 листов, на обоих клиентов не хватит. А поскольку северный склад гораздо дороже, решение не очевидно.

Как же его найти? В нашем конкретном примере, в принципе, можно пойти путем перебора всех вариантов. Но если количество клиентов и складов увеличится, решить задачу вручную не удастся. Поэтому давайте посмотрим, как это сделать с помощью математики. Для начала, как учили в средней школе, введем переменные.