Чарльз Бэбидж 1791—1871 (Апокин, Майстров) - страница 21

При проектировании разностной машины Бэбидж предложил и частично реализовал ряд интересных технических идей. Так, он разделил выполнение операций переноса десятков при сложении на два такта: подготовительный (выполняется во время операции сложения) и собственно перенос. Это новшество, впоследствии широко применявшееся в механических вычислительных устройствах, позволило существенно снизить нагрузки на рабочие элементы машины. Проектируя связь между вычислительным блоком и печатающим устройством, Бэбидж предусмотрел возможность совмещения во времени процессов вычислений и печатания результатов.

Рис. 1. Разностная машина (1822)


Основное назначение разностной машины Бэбидж видел в составлении таблиц. Машина позволяла также проверять таблицы, составленные ранее. Для этого операции должны были производиться в обратном порядке, т. е. от полинома к конечным разностям. К примеру, если в табл. 2 при х=4 ошибочно рассчитан y (получилось 70 вместо 69), то вместо постоянных конечных разностей Δ>3=6 получится массив не равных друг другу разностей, и ошибка может быть легко замечена.

Операция проверки таблиц могла быть выполнена и другим путем. Бэбидж писал: «Если соответствующие числа размещены на выходе машины, и она завершила расчет одной страницы таблицы любого типа, то следует провести сравнение последнего табличного числа страницы с заранее рассчитанными. Если различие существует, то наиболее эффективное решение заключается в пересчете целой страницы, т. е. потере всего лишь нескольких часов работы» [83, с. 125].

В общем случае область применения разностной машины Бэбиджа сводилась к вычислению значений функций вида

y = a + bx + cx>2+ ... + mx>n-1.

Если требовалось рассчитать сумму сходящегося бесконечного ряда, то брали только первые п членов. При достаточно большом п функция, выраженная рядом, могла воспроизводиться достаточно точно и степень этой точности была известна.


Таблица 2. Значения функции y = x>3 + x + 1 и конечных разностей (при ошибочном подсчете x>4 = 70)
XYКонечные разности
  Δ>1Δ>2Δ>3
01266
138127
2И20193
33139229
4706131 
513192  
6223   
Таблица 3. Значения функции (способ задания которой требуется определить) и конечных разностей
XYΔ>1Δ>2
0202
1224
246б
31066
416128
528208
64828 
776  

Принцип, положенный в основу разностной машины, мог быть использован для расчета, например кубов чисел, логарифмических и тригонометрических таблиц и т. п. При этом во многих случаях приходилось брать большое число разностей, прежде чем достигалось постоянное значение, а это, в свою очередь, означало, что на машине нужно было произвести довольно много действий, чтобы получить табличное значение функции.