Сейчас. Физика времени (Мюллер) - страница 139

Решающий эксперимент провели Стюарт Фридман и Джон Клаузер в Калифорнийском университете, Беркли. Помню, какое благоговение я испытывал по отношению к их невероятно сложному проекту. Эксперимент требовал величайшей тщательности, потому что любой полученный результат способен был разрушить целый класс разнообразных теорий и оскорбить множество теоретиков. Стюарт, с которым мы подружились достаточно близко, любил шутить, что ничего не открывал: он лишь доказал, что другие физики ошибаются. Ну, тогда достаточно сказать, что ученым, ошибочность утверждений которого он доказал, был Эйнштейн; я считаю это немалым достижением.

Одно из возражений Эйнштейна против квантовой физики заключалось в неприятном свойстве мгновенного коллапса волновой функции. Он называл такой коллапс и другие внезапные изменения жутким дальнодействием[204]. Измерение положения частицы могло, согласно копенгагенской интерпретации, сразу же, мгновенно повлиять на амплитуду частицы, находящейся от измеряющего на расстоянии в несколько световых лет. Ранее Эйнштейн в своей теории относительности показал, что сама концепция мгновенности и одновременности бессмысленна для разделенных объектов. Даже порядок, в котором происходят события, может зависеть от системы отсчета. Это означало, что если одно событие вызывает другое, то в другой СО событие-причина может происходить после события-результата (как в моем парадоксе с тахионным убийством). Эйнштейн исследовал эту проблему в эпохальной работе, написанной с соавторами – Борисом Подольским[205] и Натаном Розеном[206], и их анализ позже получил известность как парадокс Эйнштейна−Подольского−Розена, или ЭПР-парадокс[207] (по заглавным буквам фамилий авторов).

Конечно, у этого парадокса было и простое решение, к которому, собственно, и склонялся сам Эйнштейн. Он предложил иную интерпретацию волновой функции. Это не физический объект, говорил он, представляющий реальность целиком, но всего лишь статистическая функция, отражающая недостаточность и недостоверность наших знаний. Эйнштейн считал, что электрон всегда занимает вполне реальное, но скрытое положение, и квантовая физика просто не знает, что это за положение. Никакие реальные волны не исчезают; никакой коллапс не нужен. В квантовой физике просто недостает некоторого скрытого параметра (к примеру, это может быть реальное положение частицы в пространстве). Добавить его – и физика вновь станет полной, и прошлое вновь полностью определяет будущее.

Аналогию такого подхода можно найти в наших представлениях о газах. Мы не знаем, где находится каждая молекула газа, но у нас есть теория, описывающая свойства частиц в среднем. Давление, которое мы измеряем, и температура – это всего лишь средние значения характеристик громадного числа молекул. Это статистическая теория.