Очень примечательно, что из уравнений общей теории относительности исчезло мнимое число √−1. В конечном счете Эйнштейн нашел путь (и сам разработал его) рассматривать пространство-время, не прибегая к мнимым числам. Он исключил √−1 не потому, что счел это число несуществующим (оно существует). Эйнштейн отыскал другой подход, который использует неевклидову геометрию Римана[81] и в результате которого его уравнения и вычисления стали более элегантными, мощными, легко применимыми и легко понимаемыми.
Для слабых гравитационных полей, таких как гравитационное поле нашего Солнца (черные дыры имеют сильные гравитационные поля), уравнения Эйнштейна не отличались от гравитационных уравнений Ньютона. Он вывел, что гравитационное ускорение массы М выражается уравнением a = GM/r2 (согласно закону всемирного тяготения). Ньютоновское уравнение было всего лишь приближением (хотя и очень хорошим) в сравнении с более точным уравнением Эйнштейна в его общей теории относительности. Нильс Бор[82], один из основателей (наряду с Эйнштейном) квантовой физики, позже назвал это свойство научных теорий принципом соответствия[83]. Новые теории должны давать такие же результаты, как и старые, в тех областях, в которых прежние научные воззрения были успешными. Для общей теории относительности это распространялось на малые скорости и относительно небольшие силы гравитации.
Однако между новой теорией гравитации и старой теорией Ньютона существовали и различия. С помощью своих новых уравнений в 1915 году Эйнштейн рассчитал, что орбита планеты Меркурий при движении вокруг Солнца должна представлять собой не простой эллипс, а эллипс с постепенно наклоняющейся осью вращения. Вычисления Эйнштейна помогли разрешить загадку аномального явления, которое было открыто за 50 лет до этого и не поддавалось объяснениям. Было установлено, что орбита Меркурия изменяет наклон. Феномен получил название «аномальное смещение перигелия Меркурия». Из уравнений общей теории относительности вытекало именно такое значение смещения, которое наблюдалось. Оказались не нужны никакие поправки или дополнительные вычисления. В этом случае теория Эйнштейна не предсказала что-то, а постфактум точно объяснила явление, известное науке с 1859 года.
Мне трудно представить, что должен был испытать Эйнштейн, впервые рассчитав орбиту Меркурия с помощью своих уравнений и получив результат, который идеально соответствовал хорошо известному, но непонятному до тех пор смещению. Если быть абсолютно точным, то к этому итогу великий ученый пришел в 1913 году в сотрудничестве с Михаэлем Бессо. В письме своему другу Гансу Альберту Эйнштейн писал: «Я только что закончил самую замечательную работу в моей жизни». Это уникальное заявление для человека, который уже создал специальную теорию относительности, своей интерпретацией броуновского движения доказал, что атомы существуют, и создал основу для квантовой физики работами по фотоэффекту.