Объяснение поведения газов наличием в них атомов было одним из великих ранних актов универсализации физики. До возникновения теории атомов поведение газов не связывалось с законами Ньютона (например, с равенством F = ma). Существовало представление, что тепло – это отдельная жидкость, которая называется теплород[104] и якобы перемешана с газом. Но статистическая физика показала, что тепло – это энергия отдельных атомов. Быстро двигающиеся атомы – «горячие», медленные – «холодные», а температура (по абсолютной шкале) считается средней кинетической энергией каждого атома.
И здесь снова оказалась неоценимой роль Эйнштейна. В 1905 году, том самом, когда он сформулировал уравнение E = mc², ученый искал возможности доказательства атомной теории, рассчитывая эффект, который атомы могут оказывать на мельчайшие пылинки. Начав свою работу, он узнал, что этот эффект мог быть тем самым броуновским движением, которое открыл ботаник Роберт Броун в 1827 году. Рассматривая пыльцу растений в сильный микроскоп, Броун увидел, как множество мельчайших частичек совершало лихорадочные движения по всем направлениям, как будто плывя в разные стороны. Тогда признанным объяснением этого явления считалось то, что эти частицы – зародыши жизни, изначальные живые организмы типа инфузорий, первичная форма.
Нет. Эйнштейн показал: броуновское движение объясняется тем, что молекулы воды, атакующие частицы пыльцы с разных сторон, не уравновешивают друг друга. Толчки молекул с одной стороны пылинки время от времени становятся сильнее, чем с другой стороны, и частички «прыгают». Хотя в среднем они остаются на месте. Эйнштейн высчитал отклонения от среднего результата. Частицы все-таки двигаются, но не потому, что «плывут» в воде, а потому что совершают случайные перемещения, которые красочно описываются как «походка пьяного». Если человек сделает много случайных шагов в произвольных направлениях, то все равно значительно удалится от первоначального места. В среднем расстояние до него будет увеличиваться в прогрессии, выражаемой произведением длины шага на корень квадратный из количества шагов. Хотя первые эксперименты показали, что автор теории относительности ошибался в описании броуновского движения, точные измерения, сделанные известным французским физиком Жаном Перреном[105] в 1908 году, подтвердили выводы Эйнштейна и привели к широкому признанию факта существования атомов и молекул – и к принятию статистической физики.
Хотя человечество к концу XIX века уже многое знало об электричестве, магнетизме, массе и ускорении, я нахожу очень примечательным то обстоятельство, что только после работ Эйнштейна и Перрена 1905−1908 годов широкая научная общественность в целом приняла существование атомов и молекул.