Вот что происходит в этом случае (на интуитивном уровне). Внутри сети скрывается некое подмножество узлов, которое Дункан называет уязвимым кластером. Определяющим здесь является геометрическая структура этого кластера – способ, посредством которого он «просачивается» через остальную сеть. Выражаясь языком маркетинга, уязвимый кластер состоит из так называемых ранних последователей («энтузиастов», «первопроходцев»): это не инициаторы, а узлы, готовые к тому, чтобы опрокинуться, как только опрокинется хотя бы кто-нибудь из их соседей[271]. Вблизи второго переломного момента уязвимый кластер очень узок и почти незаметен – он занимает очень малый процент сети в целом, – поэтому шансы активизировать его с помощью случайного инициатора весьма невелики. Но после того как он оказывается активизирован, «пожар» с него постепенно перебрасывается на соседей, которые, в свою очередь, распространяют этот пожар на своих собственных соседей; этот процесс неумолимо продолжается до тех пор, пока весь этот гигантский компонент (обширная, взаимосвязанная сетчатая структура узлов, которая занимает доминирующее положение в системе) не оказывается объят пламенем. Самым удивительным здесь оказывается то, что почти все узлы в этом гигантском компоненте не являются ранними последователями: они представляют собой более консервативную совокупность с более высокими порогами (в литературе по маркетингу их называют «ранним и поздним большинством»). Однако поскольку сеть оказывается столь плотно связанной вблизи второго переломного момента, искра, которой удалось активизировать уязвимый кластер, способна создать достаточный импульс для активизации практически всех остальных узлов.
Очевидно, что модель Дункана является весьма упрощенной: она оставляет за скобками все богатство реальной структуры общества, приписывает всем отношениям дружбы между людьми одинаковый вес и исходит из того, что все инициаторы одинаково «заразительны» – но даже в этом случае она успешно моделирует особенности реальных модных увлечений, которые кажутся нам наиболее загадочными: их непредсказуемость, сравнительную редкость их появления и капризность их поведения. В частности, ползучее распространение какого-нибудь немыслимого каскада вблизи второго переломного момента очень напоминает малобюджетный хит, который неспешно начинает завоевывать популярность в массах, раскручиваясь за счет молвы.
Эта модель позволяет также делать поддающиеся проверке прогнозы, которые касаются не отдельно взятых модных увлечений (которые, как гласит теория, непредсказуемы по своей природе), а статистики многих из них, рассматриваемых в совокупности. Эти статистические выводы позволяют понять, какие вмешательства вероятнее всего способны вызвать каскады. Например, анализ показывает, что неоднородность популяции может иметь разнонаправленные последствия. Расширение диапазона порогов дестабилизирует систему, делая ее более восприимчивой к модным увлечениям (главным образом из-за наличия большего числа ранних последователей, обеспечивающих «разжигание»), тогда как расширение диапазона связности сети (увеличение количества соседей в расчете на один узел) способствует стабилизации системы. К тому же каскады обычно начинаются в разных местах вблизи двух переломных моментов этой модели. Вблизи первого переломного момента, когда сеть все еще остается разреженной и слабо связанной, каскады легче всего инициируются в хабах – узлах с наибольшим количеством связей. Вблизи второго переломного момента те немногие каскады, которые действительно возникают, обычно инициируются в среднестатистических узлах, ничем особенным не выдающихся, просто потому, что таких узлов появилось очень много.