Алгоритмы для жизни: Простые способы принимать верные решения (Гриффитс, Кристиан) - страница 123

Правило Байеса подсказывает, что, когда нам приходится оценивать вероятность исходя из ограниченного количества фактов, только один фактор так же важен, как правильные априорные предположения. Это характер распределения, из которого мы получили эти факты. Хорошие предсказания начинаются с правильного понимания, с чем мы имеем дело – с нормальным распределением или экспоненциальным. Как оказалось, правило Байеса предлагает нам абсолютное иное, очень простое проверенное средство для обоих случаев.

…и правила определения их вероятности

Вы имели в виду, что «это может продолжаться вечно» в хорошем смысле?

Бен Лернер

Изучая действие принципа Коперника, мы обнаружили: если мы используем правило Байеса, применяя неинформативное априорное предположение, то правило всегда предсказывает, что общая продолжительность существования объекта будет ровно в два раза больше его текущего возраста. По сути, неинформативное априорное предположение, со всеми его невероятно изменчивыми возможными масштабами, – как Берлинская стена, которая могла бы простоять еще несколько месяцев или несколько веков. Это и есть экспоненциальное распределение. И для каждого экспоненциального распределения правило Байеса утверждает, что самой подходящей стратегией для определения вероятности станет правило умножения вероятностей: просто умножим количество, имеющееся по состоянию на сегодняшний день, на некоторый постоянный фактор. В случае с неинформативным априорным предположением таким постоянным фактором является число 2, отсюда и предсказание по Копернику; в других случаях экспоненциального распределения множитель будет зависеть от конкретного распределения, с которым вы работаете. В случае кассовых сборов, например, множитель равен примерно 1,4. Таким образом, если вы услышите, что на данный момент фильм собрал $6 млн, то можно предположить, что в общей сложности он соберет около $8,4 млн. Если фильм уже собрал $90 млн, то наверняка наивысшей точкой станут $126 млн. Правило умножения является прямым следствием того факта, что экспоненциальные распределения не отражают естественных масштабов того явления, которое они описывают. Таким образом, единственное, что дает нам ощущение масштаба для нашего предсказания, – та самая единственная точка данных, которая у нас есть (например, тот факт, что Берлинская стена существовала уже восемь лет до нашего появления). Чем больше значение этой единственной точки данных, тем больше масштаб явления, с которым мы имеем дело, и наоборот. Возможно, фильм, собравший $6 млн за первый час после выхода, на самом деле блокбастер, но гораздо более вероятно, что он так и не соберет более $9 млн.