Физика для любознательных. Том 1. Материя. Движение. Сила (Роджерс) - страница 250



Фиг. 271.Кривая звука «у…».


г) «Волновой пакет». Гармонический анализ можно применить к одиночному импульсу (ему соответствует звук от шлепка или радиоволна, испускаемая при ударе молнии) и к короткому цугу волн, вроде волнообразного всплеска, которым в современной теории характеризуют положение движущегося электрона. Для идеального представления таких сигналов приходится складывать составляющие, которые образуют бесконечный набор частот, но составляющие с заметной амплитудой равномерно распределены в пределах полосы частот вокруг исходной частоты.

Мы должны составить сумму, содержащую основную составляющую с длиной волны исходного цуга волн + составляющую с несколько большей длиной волны +… + составляющую с еще большей длиной волны… + и т. д., и такой же набор более коротких длин волн. Горбы этих составляющих совпадают друг с другом в центре, но дальше согласованность их хода нарушается, и они гасят друг друга. Если исходный цуг волн длинный, то основные составляющие будут заключены в узком интервале частот или длин волн — чем длиннее цуг, тем уже полоса частот. Напротив, для очень короткого цуга (в предельном случае для отдельного выброса или импульса) требуется широкая полоса частот. (Это не очевидно; не обращаясь к математике, вы можете в лучшем случае сказать, что это могло бы быть так.) Изложенные представления имеют важное значение в современной атомной теории.

Основное достоинство гармонического анализа (который, как утверждает теорема Фурье, может быть применен всегда) состоит в том, что он позволяет с помощью простого математического описания разлагать сложные движения на серию гармонических колебаний. Гармонический анализ находит широкое применение в физике и технике, им пользуются специалисты в области телефонной связи, радиоинженеры, составители таблиц, предсказывающих океанские приливы, и т. д., а в наши дни и физики-теоретики, которые описывают поведение атомов и электронов с помощью гармонических составляющих.



Фиг. 272. Гармонический анализ.

 >— составление «волнового пакета» путем сложения простых гармонических составляющих. Для этого синтеза необходимы гармоники всех частот (т. е. всех длин волн) от нуля до бесконечности. Мы получим короткий волновой пакет без возмущений до и после него. Важнейшие гармоники попадают в центральный «диапазон» частот (или длин волн), за пределом которого амплитуда гармоник должна быть еще меньше. Чем уже этот диапазон частот, тем длиннее волновой пакет, тем больше в нем укладывается длин волн; 



>б — разложение ограниченного цуга волн на составляющие. Если направить непрерывный поток волн на какую-либо преграду и убрать ее на короткое время, то можно ожидать, что за ней будет ограниченный цуг волн, который можно разложить на бесконечно большое число гармонических составляющих бесконечно малой амплитуды. Важнейшие гармонические составляющие попадают в центральный «диапазон» частот. Чем короче исходный цуг волн, тем шире получается этот диапазон частот гармоник при разложении;