Физика для любознательных. Том 1. Материя. Движение. Сила (Роджерс) - страница 283

На графике F (фиг. 298) представлены данные, относящиеся к двум лагерям, обитатели которых принадлежат, так сказать, к двум типам едоков. Там же проведены наилучшие прямые. Данные эти вымышленные, но напоминают настоящие, потому что они не ложатся точно на прямую, как округленные числа в первоначальном примере, а разбросаны относительно нее. Если считать, что прямые линии выражают действительную зависимость, которой подчиняются данные, то каждой прямой можно сопоставить соотношение вида P ~ N. Мы можем даже записать

P = 4,1∙N для одной прямой

и

P = 8,0∙N для другой.

Постоянную (4,1 или 8,0) лучше всего определять по наклону прямой, а не по отдельным точкам или части данных. Проводя прямую линию, наименее уклоняющуюся от точек, мы автоматически находим среднее взвешенное значение.



Средние взвешенные значения

Среднее взвешенное — это такое среднее, при нахождении которого приписывают добавочный вес наиболее надежным данным и очень малый вес данным, содержащим, по-видимому, грубые ошибки. Определяя такое среднее арифметически, мы придаем большой вес достоверным данным, учитывая их при составлении суммы несколько раз, в то время как ненадежные данные учитываются только один раз. Потом мы делим сумму на число всех слагаемых, разумеется, считая слагаемые, которые брались повторно. Этот способ усреднения вполне приемлем и разумен, но таит в себе опасность. Дело в том, что он может побуждать нас получить как раз такой ответ, который мы надеемся получить!

Проводя прямую по точкам, мы замечаем следующее. Может получиться, что почти все точки хорошо укладываются на прямую, а одна или две точки отстоят далеко от нее. Если мы в конечном счете выбираем эту прямую, то ее наклон дает среднее взвешенное значение, при этом одна или две «выскочившие» имеют очень малый вес. Выпадение этих точек может быть результатом небрежности, и мы поступим разумно, если по существу пренебрежем ими. С другой стороны, большинство точек может укладываться на прямую из-за случайных ошибок; кроме того, немногочисленные выпадающие точки могут послужить ключом к важным выводам. Таким образом, есть опасность, что, проводя прямую по экспериментальным точкам, мы явимся жертвой предвзятого подхода к задаче. Но при достаточно внимательном отношении и хорошем навыке можно надеяться получить взвешенное среднее, которое будет достаточно надежным.


Прямая зависимость или пропорции

Проводя пробную прямую, мы задаем вопрос: «Имеет ли место линейная зависимость?». Мы должны прежде всего попытаться провести прямую через начало координат, даже если в начале координат нет ни одной экспериментальной точки. Это требование, возможно, бессмысленно. Так, на фиг. 299 дан график