Физика для любознательных. Том 1. Материя. Движение. Сила (Роджерс) - страница 45

>0 = +3, то мы должны записать а = —1, используя знак плюс для скорости, ускорения и пройденного пути в направлении на восток, а знак минус для перечисленных величин, направленных на запад. Тогда s будет равно результирующему расстоянию, пройденному за время t, а не арифметической сумме перемещений в западном и восточном направлениях. Это происходит потому, что при вычислении каждого отрезка пути мы приписываем знак плюс перемещениям в направлении на восток, а знак минус перемещениям на запад, и когда мы складываем эти отрезки пути со знаками + и —, стремясь найти s, то в соответствии с правилами алгебры получим результирующую разность перемещений. При v>0 = +3 и а = —1 движение будет замедленным: тело движется все медленнее и медленнее вперед в течение 3 сек, останавливается, а затем движется все быстрее и быстрее в обратном направлении. Через 5 сек траектория движения будет такой, как показано на фиг. 13: тело переместится на 4,5 м вперед, затем на 2 м назад, и результирующее перемещение будет равно 2,5 м.



Фиг. 13. Результирующее пройденное расстояние s.


Алгебра дает



Таким образом, s всегда означает результирующее расстояние, пройденное от старта до финиша.

Приведенные выше соотношения — это лишь инструменты, а не разделы науки, имеющие жизненно важное значение. Эти соотношения абсолютно верны для движения с постоянным ускорением и отнюдь не достоверны для других движений. Только эксперимент может сказать нам, в каких случаях они применимы к реальным явлениям окружающего мира.


Задача 6.Доказательство без математического анализа

Галилей не имел возможности воспользоваться математическим анализом, он предпочитал геометрию и рассматривал равномерно ускоренное движение следующим образом. Представим себе график скорости движущегося тела, откладываемый по вертикали в зависимости от времени, откладываемого по горизонтали. Если, тело движется с постоянным ускорением, его скорость должна возрастать с течением времени равномерно. График скорости должен представлять собой прямую линию. Она не обязательно должна проходить через начало координат, она может идти от начальной скорости v>0 при t = 0, достигая некоторого значения v в момент времени t.

Посмотрим теперь, что произойдет за некоторый очень короткий промежуток времени Δt, когда скорость равна, скажем, v>1. (Разумеется, v все время возрастает, но мы можем в качестве v>1 взять среднее за короткий промежуток времени Δt.) Тогда тело проходит за этот промежуток времени расстояние [(v>1)∙(Δt)]. Но на графике величина [(v>1)∙(Δt)]— это произведение [(высота)∙(ширина)] маленькой вертикальной полоски с основанием