Однако из этих двух аксиом следует, что среднее дневное продвижение планеты по эксцентрике – то же самое, что истинная дневная дуга ее эксцентрики в те моменты, когда планета находится на конце четверти эксцентрики, отмеренной от афелия, хотя эта истинная четверть кажется меньше соседнего квадранта. Далее, отсюда следует, что сумма любых двух истинных дневных дуг эксцентрики, одна из которых находится на том же расстоянии от афелия, что другая – от перигелия, равна сумме двух средних дневных дуг. И, следовательно, поскольку отношение длин окружностей равно отношению их диаметров, отношение средней дневной дуги к сумме всех средних и равных дуг в общей окружности равно отношению средней дневной арки к сумме всех истинных эксцентрических дуг, сумма которых та же, но между собой они не равны. Все это следует в первую очередь знать об истинных дневных дугах эксцентрики и об истинном продвижении, и тогда с опорой на эти знания мы поймем, как выглядят движения небесных тел, если предположить, что мы смотрим на них с Солнца.
В-шестых [VI], что касается дуг в том виде, с каким мы их предположительно наблюдали бы с Солнца, то даже астрономам древности было известно, что помимо истинных продвижений, равных между собой, продвижение, происходящее дальше от центра мироздания (то есть в афелии), наблюдателю, находящемуся в этом центре, покажется меньше, а продвижение, происходящее ближе (то есть в перигелии), подобным же образом покажется больше. Поэтому – поскольку к тому же истинные дневные дуги на ближнем расстоянии больше благодаря более быстрому продвижению, а в далеком афелии меньше благодаря медленному продвижению, я показал в «Комментариях о Марсе», что отношение видимых дневных дуг одного эксцентрического круга с большой точностью обратно пропорционально отношению квадратов их расстояний до Солнца. Например, если мы возьмем какую-то планету, которая в один день находится от Солнца на расстоянии 10 частей (каких бы то ни было), а в противоположный день, когда она находится в перигелии, на расстоянии в 9 единиц, тогда, несомненно, ее продвижение в афелии, видимое с Солнца, будет относиться к видимому продвижению в перигелии как 81:100.
Однако это так при следующих условиях: во-первых, эксцентрическая дуга не должна быть длинной, иначе у отдельных ее участков будет слишком разное расстояние до Солнца, то есть расстояния концов дуги от апсид будут заметно различаться, во-вторых, эксцентричность не должна быть слишком большой, ведь чем больше эксцентричность (то есть чем длиннее становится дуга), тем больше сверх всякой меры возрастает угол ее видимого продвижения при приближении к Солнцу, согласно Восьмой теореме Евклидовой «Оптики», точно так же у коротких дуг даже при большом расстоянии нет никакого момента, о чем я упоминал в своей «Оптике», глава 11. Но я делаю эту оговорку еще по одной причине. Дело в том, что эксцентрические дуги вокруг средних аномалий из центра Солнца видны косо. Такой ракурс уменьшает величину видимого продвижения, а дуги возле апсид, напротив, видны наблюдателю, предположительно находящемуся на Солнце, прямо. Поэтому при очень большой эксцентричности эта эксцентричность заметно уменьшает отношение продвижений, и если мы безо всякого уменьшения применим среднее дневное продвижение к среднему расстоянию, то продвижение это будет именно таким, каким покажется на среднем расстоянии, как будет проиллюстрировано ниже на примере Меркурия. Обо всем этом подробнейшим образом рассказано в книге V «Сокращения коперниканской астрономии», однако и здесь об этом следует упомянуть, поскольку они имеют отношения к составным частям небесных консонансов, которые мы разберем каждый по отдельности.