Жизнь без старости (Скулачёв, Скулачев) - страница 179

>-].

Стратегия, описанная выше, невозможна для одноклеточных. Так, даже азотобактер, имеющий рекордную среди живых существ скорость дыхания, не в состоянии, как показал расчет, существенно понизить внутриклеточную [О>2] из-за слишком короткой дистанции между цитозолем бактериальной клетки и внешней средой: поглощение О>2 цитохромоксидазой тотчас компенсируется потоком О>2 извне. Здесь на помощь приходит полисахаридная «шуба», окружающая клетку азотобактера. «Шуба» исключает конвекцию жидкости, омывающей непосредственно бактериальную стенку, что резко замедляет движение О>2 из среды к бактерии. Проблема защиты от кислорода стоит для азотобактера особенно остро в средах, не содержащих солей аммония. В этом случае азотобактеру, чтобы выжить, приходится восстанавливать молекулярный азот до аммиака, чем занимается специальный фермент — нитрогеназа. Последняя чрезвычайно чувствительна к О>2, даже следы которого ее быстро инактивируют. Неудивительно, что именно в условиях фиксации N2 азотобактер включает особую упрощенную дыхательную цепь, поглощающую кислород гораздо быстрее, чем делает это «каноническая» цепь, составленная из комплексов I, III и IV. Простая цепь, получившая название цепи дыхательной защиты, состоит всего из двух ферментов: 1) несопряженной NADH-дегидрогеназы II с ее единственным редокс-центром (FAD), которая восстанавливает CoQ посредством NADH, и 2) bd-хинолоксидазы, окисляющей полученный C0QH2 кислородом. Эта вторая реакция генерирует протонный потенциал с эффективностью №/е>- = 1, т. е. вдвое меньшей, чем у комплекса IV. В итоге цепь дыхательной защиты транспортирует всего 2Н+ на каждую молекулу окисляемого NADH вместо 10Н+ в случае «канонической» цепи. Следовательно, азотобактеру в условиях дыхательной защиты приходится окислять в 5 раз больше NADH, чтобы получить столько же АТФ, сколько синтезирует обычная дыхательная цепь.

Иной путь защиты от кислорода избрала кишечная палочка. Как было показано в нашей лаборатории Е.О. Будрене, эти бактерии в ответ на появление в среде Н>2О>2 собираются в кластеры, каждый из которых состоит из тысяч отдельных клеток. Сигналом к движению бактерий навстречу друг другу служит градиент аттрактанта — аспарагиновой кислоты, которую они начинают выделять в среду при добавлении перекиси водорода. В результате на чашке с полужидким агаром образуется множество скоплений (кластеров) бактериальных клеток, каждый из которых состоит из большого количества отдельных бактерий. Кластеры могут образовывать правильные структуры различной формы, по-видимому, отражающие неравномерное распределение аспартата в агаре. Можно полагать, что внешние слои бактерий в кластере поглощают кислород, тем самым понижая его концентрацию в глубинных слоях кластера. В результате бактерии во внешних слоях жертвуют собой, прикрывая тех, кто оказался внутри кластера. В известном смысле аналогичная стратегия применяется в очень крупных мышечных клетках. Здесь митохондрии скапливаются непосредственно под внешней клеточной мембраной (сарколеммой). От этих скоплений вглубь клетки уходят длинные митохондриальные тяжи, связывающие субсарколемальные митохондрии с межфибриллярными, локализованными внутри мышечного волокна, т. е. между пучками актомиозиновых нитей. Предполагается, что кислород, поступающий в мышечную клетку, потребляется субсарколемальными митохондриями, дыхательная цепь которых образует протонный потенциал, который передается межфибриллярным митохондриям для синтеза АТФ.