Фрактальная геометрия природы (Мандельброт) - страница 11

Похожие соображения можно применить и к другим физическим свойствам — таким, например, как скорость, давление или температура. Вглядываясь в нарисованную нами неизбежно несовершенную картину Вселенной при все возрастающем увеличении, мы видим, что поведение этих свойств становится все более нерегулярным. Функция, описывающая любое физическое свойство, образует в межматериальном пространстве континуум, состоящий из бесконечного количества сингулярных точек.

Пример бесконечно разрывной материи — непрерывный эфир с вкраплениями крошечных звезд — являет нам космическая Вселенная. Разумеется, все те заключения, к которым мы пришли выше, могли бы быть достигнуты с помощью воображаемой сферы, с легкостью вмещающей в себя планеты, солнечные системы, звезды и туманности...

Позволим себе высказать одно предположение, достаточно произвольное, но непротиворечивое. Наверняка мы вскоре столкнемся с такими случаями, для описания которых окажется проще использовать недифференцируемые функции, нежели те, что имеют производную. Когда такое произойдет, практическая ценность математических исследований иррегулярных континуумов станет очевидной всем».

И далее, подчеркивая мысль, с новой строки:

«Однако это — всего лишь мечтания. Пока».

КОГДА «ВЫСТАВКА ЧУДОВИЩ» СТАНОВИТСЯ МУЗЕЕМ НАУКИ

Часть из тех мечтаний, относящаяся к броуновскому движению, и впрямь воплотилась в реальности еще при жизни Перрена. Случилось так, что его статья [469] привлекла внимание Норберта Винера, причем восторженный и удивленный Винер тут же решил должным образом исследовать и строго определить недифференцируемую первую модель броуновского движения ([595], с. 38-39 или [596], с. 2-3).

Эта модель до сих пор сохраняет свое значение, хотя физики и указывают на то, что ее недифференцируемость проистекает из злостной идеализации, а именно — из пренебрежения инерцией. Поступая так, физики поворачиваются спиной к наиболее существенному для данного труда свойству модели Винера.

Что касается других предсказываемых Перреном применений математических исследований в физике, то до сегодняшнего дня никто даже не пытался этим заниматься. Собрание множеств, о которых упоминал Перрен (кривые Вейерштрасса, канторова пыль и подобные им), до сих пор остается предметом изучения «чистой математики».

Некоторые авторы (например, Виленкин [573]) называют это собрание «Музеем математических искусств», не подозревая (я уверен), насколько точно и полно доказываются эти слова в данном эссе. Из первой главы мы помним, что кое-кто (начиная еще с Анри Пуанкаре) предпочитает использовать для упомянутого собрания словосочетание «Выставка чудовищ» — подобно Джону Валлису с его «Трактатом об алгебре» (1685), где четвертое измерение было описано как «чудовище в Природе, не более возможное, чем химера либо кентавр».