Надо отдать Хану должное — в своих высказываниях он не доходит до знаменитого восклицания Шарля Эрмита относительно недифферен- цируемых функций. В письме к Стилтьесу, датированном 20 мая 1893 года, Эрмит пишет об ужасе и отвращении, которые вызывает у него «это наказание Господне, эти жалкие функции без производных» ([211], II, с. 318). Конечно же, каждому из нас хочется верить в то, что великие лишены недостатков и что Эрмит просто шутил, однако из написанной в 1922 году «Заметки» Лебега ([295], I), можно заключить, что это не совсем так. Написав статью о поверхностях, к которым нельзя построить касательные плоскости (об «абсолютно измятых носовых платках»), Лебег представил ее Академии наук для публикации, однако «Эрмит сначала воспротивился включению статьи в «Comptes Rendus»1; примерно к этому времени относится его письмо Стилтьесу... »
Мы с вами уже знаем, что Перрен и Штейнгауз страха перед чудовищами не испытывали, однако единственным математиком, который возражал против общего мнения, основываясь именно на интуитивных соображениях (Штейнгауз возражал, опираясь на факты), был Поль Ле-ви [311]: «[Мне] всегда было удивительно слышать, что если руководствоваться в геометрии здравым смыслом, то непременно приходишь к выводу, что все непрерывные функции дифференцируемы. Насколько я могу судить по собственному опыту, начиная с моей первой встречи с концепцией производной и по сей день, верно как раз обратное».
Как ни печально, эти голоса остались неуслышанными. Почти все книги и абсолютно все музеи науки продолжают уверять нас в том, что недифференцируемые функции противны здравому смыслу, «чудовищны», «патологичны» или даже «психопатичны».
ПРИРУЧЕНИЕ КРИВОЙ КОХА. РАЗМЕРНОСТЬD=ln4/ln3≈1,2618
Я утверждаю, что кривая Коха является грубой, но математически строгой моделью береговой линии. В качестве первой количественной проверки рассмотрим длину L(ε) троичного терагона Коха, длина сторон которого равна ε. На этот раз длину кривой можно измерить точно, получив при этом чрезвычайно удовлетворительный результат:
L(ε)=ε>1−D.
Эта точная формула оказывается идентичной эмпирическому закону Ричардсона о длине побережья Британии. Для троичной кривой Коха имеем
D=ln4/ln3≈1,2618,
откуда следует, что значение D находится внутри интервала значений, полученных Ричардсоном!
< Доказательство: Очевидно, что L(1)=1, а
L(ε/3)=(4/3)L(ε).
Это уравнение имеет решение вида L(ε)=ε>1−D если D удовлетворяет соотношению 3>D−1=4/3.
Следовательно, D=ln4/ln3, что и следовало доказать. ►
Разумеется, в случае кривой Коха показатель