Фрактальная геометрия природы (Мандельброт) - страница 37

Продолжая в том же духе, мы заменяем все прямолинейные отрезки ломаными линиями, и первоначально прямой инициатор постепенно превращается во все более длинную ломаную кривую. Поскольку мы будем иметь дело с такими кривыми на всем протяжении этого эссе, предлагаю ввести для их обозначения новый термин терагоны (от греч. «чудовище, странное создание» и «угол»). Кстати, префикс тера обозначает (очень уместно, надо сказать) в метрической системе умножение на 10>12.

Если продолжить вышеописанный каскадный процесс до бесконечности, то наши терагоны устремятся к пределу, рассмотренному впервые фон Кохом [574] (см. рис. 74). Назовем такую кривую троичной кривой Коха и обозначим символом K.

На рис. 71 хорошо видно, что площадь этой кривой обращается в нуль. С другой стороны, с каждой ступенью построения ее общая длина увеличивается в 4/3 раза, следовательно, в пределе длина кривой Коха бесконечна. Более того, кривая Коха непрерывна, но нигде не имеет касательной — точно график непрерывной функции, не имеющей производной.

В качестве модели береговой линии кривая K, представляет собой лишь очень отдаленное приближение, но не потому, что она слишком неправильна — скорее потому, что по сравнению с неправильностью типичной береговой линии неправильность кривой Коха уж очень предсказуема. В главах 24 и 28 мы попробуем добиться лучшего соответствия с помощью некоторой рандомизации процесса построения.

КРИВАЯ КОХА В РОЛИ ЧУДОВИЩА

У человека, прочитавшего предыдущий раздел, может сложиться впечатление, что кривая Коха относится к числу наиболее очевидных и интуитивно понятных геометрических фигур. Однако вовсе не так очевидны причины, толкнувшие фон Коха на ее построение. И уж совершенно загадочным представляется отношение к ней со стороны математиков. Чуть ли не единодушно они провозгласили кривую K чудовищной! За подробностями обратимся к работе Хана «Кризис здравого смысла» [190], которая, кстати, еще неоднократно нам пригодится. Хан пишет: «Характер [неспрямляемой кривой или кривой, к которой невозможно провести касательную] совершенно не укладывается в рамки того, что мы можем понять интуитивно. В самом деле, всего лишь после нескольких повторений простой операции сегментирования образующаяся фигура становится настолько сложной, что с трудом поддается непосредственному восприятию, а уж то, к чему эта кривая стремится в пределе, и вовсе невозможно себе представить. Только с помощью разума, применяя логический анализ, мы можем до конца проследить эволюцию этого странного объекта. Если бы мы положились в данном случае на здравый смысл, то составленное нами представление оказалось бы в корне ошибочным, поскольку здравый смысл неизбежно привел бы нас к заключению, что кривых, не имеющих касательной ни в одной своей точке, попросту не бывает. Этот первый пример неадекватности интуитивного подхода затрагивает самые фундаментальные концепции дифференцирования».