) содержит массу M(R>0), то круг радиуса R=R>0/3 вместит в себя массу M(R)=M(R>0)/4. Отсюда
.
Следовательно, отношение M(R)/R>D не зависит от радиуса R и может послужить для определения плотности ρ.
Представьте себе точку, движущуюся вдоль полупрямой Коха и проходящую за одинаковые интервалы времени дуги одинаковой меры. Если теперь обратить функцию, определяющую время как зависимость от положения точки, то мы получим функцию, определяющую положение точки как зависимость от времени, т. е. функцию движения. Скорость такого движения, разумеется, бесконечна.
СЛУЧАЙНЫЕ БЕРЕГОВЫЕ ЛИНИИ: ПРЕДВАРИТЕЛЬНЫЙ ВЗГЛЯД
Кривая Коха похожа на настоящие береговые линии, однако она имеет кое-какие существенные недостатки (эти недостатки практически в неизменном виде присущи всем ранним моделям рассматриваемых в настоящем эссе прецедентов). Ее части идентичны одна другой, а коэффициент само подобия r непременно задается жесткой шкалой вида b>−k, где b — целое число, т. е. r=1/3, (1/3)>2 и т.д. Таким образом, кривую Коха можно считать лишь очень предварительной моделью береговой линии.
Я разработал несколько способов избавления от этих недостатков, однако ни один из них не обходится без известных вероятностных усложнений, с которыми нам на данный момент не справиться: сначала следует уладить множество вопросов, касающихся неслучайных фракталов. Интересующемуся же читателю, знакомому с теорией вероятности, ничто не мешает заглянуть немного вперед и полюбоваться на модели, основанные на моих «сквиг-кривых» (см. главу 24) и, что более важно, на линиях уровня дробных броуновских поверхностей (см. главу 28).
Здесь и далее я использую следующий способ представления материала. Многочисленные узоры, создаваемые Природой, рассматриваются на фоне упорядоченных фракталов, которые могут служить пусть и очень приблизительными, но все же моделями рассматриваемых феноменов, тогда как предлагаемые мною случайные модели отнесены в более поздние главы.
Памятка. Во всех случаях, когда значение D известно точно, не является целым числом и записано в десятичной форме с целью облегчения сравнений, в нем сохраняются четыре знака после запятой. Число 4 было выбрано исходя из следующих соображений: я хотел показать, что в данном случае значение D не является ни эмпирическим (все эмпирические значения в настоящее время известны с точностью до одного или двух десятичных знаков), ни не вполне определенным геометрическим значением (все подобные значения в настоящее время известны либо с точностью до одного-двух десятичных знаков, либо с точностью до шести десятичных знаков).