ln
N/ln
(1/r).
Нетрудно изменить общий вид получаемой конструкции путем модификации генератора; особенно интересны сочетания выступов и впадин — примеры можно найти на следующих после главы иллюстрациях. Таким образом, можно получить различные терагоны Коха, сходящиеся к кривым, размерности которых находятся в интервале от 1 до 2.
Все эти кривые Коха нигде не пересекают сами себя, поэтому при определении D их можно без какой бы то ни было неоднозначности делить на непересекающиеся части. Однако если при построении кривой Коха использовать небрежно подобранные генераторы, существует известный риск получить самокасание или самопересечение, а то и самоперекрытие. Если желаемое значение D достаточно мало, то тщательным подбором генератора можно легко избежать появления двойных точек. Задача резко усложняется при увеличении D, однако пока значение D остается меньше 2, решение существует.
Если же попытаться получить с помощью вышеописанного построения кривую Коха с размерностью больше 2, то мы неизбежно придем к кривым, которые покрывают плоскость бесконечно много раз. Случай D=2 заслуживает особого рассмотрения, и мы займемся им в главе 7.
В некоторых случаях возникает необходимость в педантичной замене термина «кривая Коха» чем-нибудь более точным и подходящим. Например, фигура, изображенная на рис. 73 внизу, формально является коховым отображением отрезка прямой и может быть названа дугой Коха. Как следствие, граничная линия на рис. 74 оказывается составленной из трех дуг Коха. Часто бывает полезно экстраполировать дугу в полупрямую Коха — экстраполяция увеличивает исходную дугу сначала в 1/r=3 раза, используя ее левую концевую точку как фокус, затем в 3>2 раз и т. д. Результат каждой следующей экстраполяции включает в себя предыдущую кривую, и получающаяся в пределе кривая содержит все промежуточные конечные кривые.
ЗАВИСИМОСТЬ МЕРЫ ОТ РАДИУСА ПРИ ДРОБНОМ ЗНАЧЕНИИ D
Рассмотрим еще одну стандартную ситуацию евклидовой геометрии и обобщим ее с учетом фрактальных размерностей. В случае идеальных однородных физических объектов плотности ρ мы можем считать, что масса M(R) стержня длиной 2R, диска или шара радиуса R пропорциональна ρR>E. При E = 1,2 и 3 коэффициенты пропорциональности соответственно равны 2, 2π и 4π/3.
Правило
применимо и к фракталам, при условии, что они самоподобны.
В случае троичных кривых Коха это утверждение доказывается проще всего, если начало координат совпадает с концевой точкой полупрямой Коха. Если круг радиуса R>0=3>k (где k≥0