Неопределенный электрический объект. Ампер. Классическая электродинамика. (Агиляр) - страница 18

, или 2, 3%).

ААА (игрок выигрывает 1 евро, теперь у него есть 4 евро, вероятность 1/6>3, или 0, 5%).

Конец игры: 11, 6%.

Продолжение игры: 5, 1 % (2, 3% + 2, 3% + 0, 5%).

Партия 4: игрок может начать с 2 евро (конфигурации AFAX и AAFX) или с 4 евро (конфигурация АААХ). Игра в любом случае продолжается.

AFAF(игрок теряет 1 евро, у него теперь есть 1 евро, вероятность 5>2/6>4, то есть 1, 9%).

AFAA (игрок выигрывает 1 евро, теперь у него есть 3 евро, вероятность 5/6>4, то есть 0, 4 %).

AAFF(игрок теряет 1 евро, у него теперь есть 1 евро, вероятность 5>2/6>4, то есть 1, 9%).

AAFA (игрок выигрывает 1 евро, теперь у него есть 3 евро, вероятность 5/6>4, то есть 0, 4 %).

AAAF(игрок теряет 1 евро, у него теперь есть 3 евро, вероятность 5/6>4, то есть 0, 4 %).

АААА (игрок выигрывает 1 евро, у него теперь есть 5 евро, вероятность 1/6>4, то есть 0, 1 %).

Конец игры: 0%.

Продолжение игры: 5, 1 %.

Партия 5: игрок рискует проиграть в конфигурациях, когда у него есть только 1 евро — AFAFF и AAFFF.

AFAFF (игрок теряет 1 евро и заканчивает игру, вероятность 5>3/6>5, то есть 1, 6%).

AAFFF (игрок теряет 1 евро и заканчивает игру, вероятность 5>3/6>5, то есть 1, 6%).

Конец игры: 3, 2 %.

Продолжение игры: 5, 1 % - 3, 2 % = 1, 9 %.

Как показывает график на следующей странице, если вероятность продолжения игры после первого раунда составляла 16, 7%, то после пяти партий она упала до 1, 9%. Другими словами, вероятность проиграть во время первой партии равна 83, 3%, а во время пятой партии — 98, 1%. Вероятность выигрыша все меньше.

Амперу удалось подсчитать все вероятности, поскольку речь идет о сходящемся ряде, и вывести предыдущее уравнение, выражающее вероятность проигрыша в случае, если он выиграет р раз и проиграет т + р раз. Рано или поздно игрок потеряет свое состояние: для этого достаточно нескольких неудачных партий подряд. Рассмотрим, например, подбрасывание монетки: при этом можно получить длительную серию, когда выпадает только орел или только решка.

Ампер отправил свое исследование в Академию наук в Париже. К его удивлению, Пьер Симон де Лаплас (1749-1827) ответил ему лично, похвалив работу, но указав на небольшую ошибку. Письмо, датированное 19 января 1803 года, было отправлено Сильвестром Франсуа Лакруа, членом Национального института наук и искусств.

Ампер, не привыкший к тому, чтобы его поправляли, пришел в полное смятение и написал Жюли, чтобы разделить с ней свое огорчение. Учитывая юный возраст и нехватку опыта, он воспринял слова Лапласа — «мне кажется, что автор допустил ошибку» — как удар и надолго потерял спокойный сон. На самом деле ошибка, которая заключалась в сумме одной серии, влияла только на четыре страницы исследования, таким образом, Ампер смог легко внести исправления в работу, напечатанную с помощью зятя Марсиля.