РИС. 8
Опыт с подвижным проводником, осуществленный Ампером вместе с де ла Ривом в 1822 году.
Опыты позволили Амперу определить факторы g и h как силу элементарных токов. Таким образом, окончательная формула позволяет вычислить взаимодействие между двумя элементами тока ds и ds'.
i • i' • ds • ds' • (sinα • sinβ • sinγ - 1/2 • cosα • cosβ)/r2
Ампера полностью поддержали Феликс Савари (1797— 1841) и Жан Фирман де Монферран (1795-1844), молодые многообещающие ученые, которые в 1823 году выпустили книгу под названием «Учебник по электродинамике». Савари был учеником Ампера и вывел закон Био — Савара через математическую формулу элементов тока Ампера. Ампер настолько обрадовался работам Савари и де Монферрана, что написал: все явления, которые до сих пор не имели удовлетворительного объяснения, можно объяснить с помощью его формулы. Ученый начал использовать свое уравнение для контуров электрического тока любой конфигурации.
Также он ввел в обиход очень важный математический прием — линию, называемую направляющей. Рассмотрим взаимодействие между одним элементом тока и замкнутой цепью. В каждой пространственной точке направляющая принимает определенное направление, которое зависит только от замкнутой цепи. Ампер доказал, что сила, оказываемая на элемент тока ds', расположенный в определенной точке, всегда перпендикулярна направляющей в той же точке. Эта сила перпендикулярна и самому элементу тока и лежит в плоскости, определяемой элементом тока и направляющей. Наконец, помня, что элемент тока и направляющая образуют угол ε, Ампер упростил взаимодействие между элементом тока и замкнутой цепью до вида
1/2D • i • i' • ds' • sinε,
где D зависит только от формы замкнутой цепи и точки, в которой находится элемент тока. Отсюда возможно вывести закон, известный во Франции как второй закон Лапласа, или закон силы Лапласа, а в российской традиции — как сила Ампера:
dF = i' • ds' • B • sin ε.
Иными словами, фактор 1/2D • i приравнивается к В. Ампер не смог прийти к этому заключению только потому, что в его время еще не использовалось понятие магнитного поля, которое и есть В. Не существовало тогда и векторного исчисления — столь полезного инструмента наших дней. Таким образом, результат ds' • B • sinε, является модулем (цифровое значение) векторного произведения векторов элементов тока и магнитного поля:
>→ →
ds'ɅB.
В результате получаем вектор, по-прежнему перпендикулярный двум векторам, участвующим в решении. Следовательно, выражение силы Ампера принимает вид
>→ → →
dF = i' • ds'ɅB.