«Наука логики» Гегеля в доступном изложении (Труфанов) - страница 39

, ед., ед ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., множество.

Некоторое количество единиц, исключающее из себя другое количество единиц, является ограниченным количеством. Как определённое границей оно становится определённым количеством или величиной.

Величина содержит в себе единство моментов дискретности и непрерывности. Как дискретная величина она является некоторым множеством единиц. А как непрерывная величина она является их монолитным единством. Величина, следовательно: а) охватывает собой некоторое количество своих единиц, б) как квант (как их единство) исключает из себя все другие единицы. Величина, определённая через единство этих моментов, становится числом.


§ 102. Числа создаются посредством действия нумерации. К одной единице добавляется ещё одна единица и в итоге получается число "два". К двойке добавляется ещё одна единица и получается число "три". В дальнейшем к полученному числу всякий раз добавляют ещё одну единицу и в результате получают следующее число. Но действие нумерации не следует смешивать с действием сложения. При нумерации только производят числа, а при сложении работают с уже готовыми числами.

Число содержит в себе свою численность, как некоторое количество единиц, и, вместе с тем, выступает как их единство, как некоторый квант. Определяемое числом некоторое количество единиц обособляет их от остального множества. Данное количество единиц становится численностью числа. Так, например, во время каких-либо коллективных мероприятий группа людей может шутливо заметить, что их "сосчитали". Казалось бы – всего-то дел, что кого-то сосчитали, но уже самим этим действием "сосчитанных" людей как бы обособили от остальной массы (множества) и выделили в отдельную группу. При этом сосчитанная группа людей несёт на себе два определения: а) она есть данная группа (квант) и б) она имеет в себе определённую численность.

Например: число 5, число 7, число 10. Каждое из этих чисел представляет собой некую единую в себе целокупность единиц. Но количество единиц (численность) у каждого числа своё: у первого – 5 единиц, у второго – 7 единиц, у третьего – 10 единиц. Представим себе такой ряд простых чисел, начинающийся с единицы и уходящий в множество:

1, 2, 3, .., 9, .., 27, .., 63, .., 81, .., 100, 1 тыс., .., 1 млн., .., 1 млрд., .., множество.

С левого края этого ряда мы имеем единицу, с правого края – множество. Число всегда занимает среднее положение между ними. С левой стороны от числа находится то количество единиц, которое оно объединяет и обособляет от множества. С правой стороны находится то множество, из которого число было взято и которому оно, тем не менее, принадлежит. Если мы возьмём число 9, то занимаемое им с левой стороны ряда девятое место говорит о количестве единиц, которое оно объединяет в себе. Если, наоборот, мы пойдём вправо от числа 9, то будем углубляться в то множество, которому оно принадлежит, как