КЭД – странная теория света и вещества (Фейнман) - страница 15

поверхность?

При наличии третьей или любого другого числа следующих поверхностей количество отражаемого света опять меняется. Получается, что мы с нашей теорией перебираем поверхности одну за другой, не зная, достигли ли мы, наконец, последней. Нужно ли фотону делать то же самое, чтобы «решить», отражаться ли ему от передней поверхности?

У Ньютона было несколько остроумных соображений относительно этой проблемы[3], но в итоге он понял, что еще не создал удовлетворительной теории.

На протяжении многих лет после Ньютона частичное отражение от двух поверхностей благополучно объяснялось волновой теорией[4], но когда провели эксперименты, в которых на фотоумножители светили очень слабым светом, волновая теория потерпела крах. По мере того, как свет становился все более тусклым, фотоумножители продолжали издавать полновесные щелчки – только они раздавались все реже. Свет вел себя как частицы.

Сегодня ситуация такова, что у нас нет хорошей модели для объяснения частичного отражения от двух поверхностей; мы только вычисляем вероятность того, что в данный фотоумножитель попадет фотон, отраженный от стеклянной пластинки. Я выбрал эти вычисления в качестве первого примера, чтобы познакомить вас с методом квантовой электродинамики. Я собираюсь показать вам, «как мы считаем бобы», – что делают физики, чтобы получить правильный ответ. Я не собираюсь объяснять, как фотоны в действительности «решают» вопрос, отскочить ли назад или пройти насквозь. Это неизвестно. (Возможно, вопрос не имеет смысла.) Я только покажу вам, как вычислить правильную вероятность того, что свет отразится от стекла данной толщины, потому что это единственное, что физики умеют делать! То, что нам приходится делать, чтобы решить эту задачу, аналогично тому, что приходится делать, чтобы решить любую другую квантово-электродинамическую задачу.

Вам придется напрячь силы – но не потому, что это трудно понять, а потому, что это скорее забавно: все, что нам надо будет делать – это рисовать маленькие стрелочки на листке бумаги – и больше ничего.

Что же общего между стрелкой и вероятностью того, что определенное событие совершится? В соответствии с правилами, по которым «мы считаем бобы», вероятность события равна квадрату длины стрелки. Например, в нашем первом эксперименте (когда мы измеряли частичное отражение от одной только передней поверхности) вероятность того, что фотон попадает в фотоумножитель А, была равна 4 %. Это соответствует стрелке длиной 0,2, так как 0,2 в квадрате равно 0,04 (см. рис. 6).

В нашем втором эксперименте (когда мы заменяли тонкие стеклянные пластинки чуть более толстыми) фотоны, отскакивая или от передней, или от задней поверхности, попадали в