Итак, где же та часть зеркала, которая в основном и определяет длину результирующей стрелки? Это та часть, где все стрелки направлены почти в одну сторону, потому что у них почти одинаковое время. Посмотрев на график, изображающий время для каждой траектории, вы увидите, что время почти одинаково для двух соседних траекторий внизу кривой, там, где время наименьшее.
Итак, наименьшее время там, где оно почти одинаково для соседних траекторий, где стрелки указывают почти в одном направлении и при сложении дают значительную длину. Именно там определяется вероятность отражения фотона от зеркала. Вот почему в грубом приближении приемлемо упрощенное представление о мире, согласно которому свет идет там, где время наименьшее (и легко доказать, что там, где время наименьшее, угол падения равен углу отражения, но у меня нет времени, чтобы вам это показать).
Таким образом, квантовая электродинамика дала правильный ответ: именно середина зеркала важна для отражения, – но этот правильный результат получен за счет допущения, что свет отражается от всего зеркала и при помощи сложения множества стрелочек, которые были нужны только для того, чтобы взаимно уничтожиться. Все это может вам показаться пустой тратой времени – глупой игрой в математику. Это вовсе не похоже на настоящую физику – иметь дело с чем-то, что только исчезает!
Давайте при помощи другого эксперимента проверим идею, что отражение действительно происходит от всей поверхности зеркала. Во-первых, отсечем большую часть зеркала и оставим около четверти его с левой стороны. У нас все еще имеется довольно большой кусок зеркала, только находится он в другом месте. В предыдущем эксперименте стрелки с левой стороны зеркала указывали в самых разных направлениях из-за большой разницы во времени между соседними траекториями (рис. 24). В этом эксперименте я собираюсь произвести более детальный расчет, используя гораздо меньшие интервалы между траекториями в левой части зеркала – настолько маленькие, что между соседними путями не будет большого различия во времени (см. рис. 25). На этой более детальной иллюстрации видно, что одни стрелки указывают больше вправо, другие – больше влево. Если мы сложим все стрелки, то получим, по существу, кольцо и нулевую результирующую стрелку.
![](
AABh50lEQVR42u29C5BdVZX/v6poSHdDKk0nkISEVAgGDAwP+YGBnwoSagR5qTCi4otRgRlH
ZfDBoKAICvpD5wcooyLID+LAGEZQMQiDZRTH+RMmVIQwBEmkoUJCOtJpOpXQ3YFL1X8vz9re
1Tvndt/uvn3v6e7Pp2rXfZ17zj777Nd377XXbpLqaAqhZK+RkgAAAIwtQ7U/TbRJAAATqr6f
dDc9HEruf5MywQAAoK6UEFsAABNej8wLYcNk1BfVijFNlFkhXBLC0yHcRL4BAIAxpC2E80I4
IoT1IcwIoTeE9hBarOF+OIR7QlhNcgEAQAE1VqnaA6vh6BAuDuG5EH4ZQgfpDAAAY8THQ7g6
hO0hrAphh31/dwgnhrAkhENDuI+kAgAY15TGqa5IBZcOIi4K4YMhHGffdYfweAjLJRtAfDUV
aU3DuNjZ9n56CIcgxgAAYIzQma93h7AzhPNDWJZzzHkhPGKNG2bzAADQKCGpHBXCFSGcGcKW
EB4K4TDJBg416ITWZSFcU0nRDcUx1vApe4SwJ2kPAABjxGxrxLQxuzfn9532uomkAgCABqNi
6wchzA9hRQifk8x8Xpd43RDCOXbcGSbGBgwgDiXG9PfdQ7jANX5TrKEEAAAYC3QAcDfJTDv6
cn5fbK8/tldmxQAAoN5Enxo3mjZS0/pvhtBjv3dKZr0RxViv5FhyNA0hxPTgg0J4Xwi/D6E5
hCMlW1CNWQgAAIwFi13DlbIghHeF8FgIv6UtAgCABvI2ydaJrTBR1pP8fpB7/3Ree1WNmeK5
ks2GXW+vt4fwesk8W3XyDAAAoMbMsVddAH16CC9ItjC6VbI1ZPND+LDsuv8YAABAvdD25zR7
/3iOLmqSsiMPZZ37viozRT1IRyDfH8JKyez2p9j7ZmsUAQAAaomKrjiSqHb4x1h7E4WXmi/q
rNiDrq0CAACopwiL1oMn2HeP5Qit3a1Ney2EJ0L4UaWTDcZfSzYCqd5B+iyoueIHTJABAADU
kjeHcKA1bN+TzOSjzV7PCuHtIfSTTAAA0CAhFlETxZkhfFfynU2pbrojhE9JZlnYmae9BhNj
2vjpgjN1z/ig+1795U+VzNPVWp4JAADUkCXWxvw6hJuS36KrYN1fbD/BVB4AAOpLnPXSbb4u
lczBoTqT6kl+j6hDD90P87EKv+8ixvzU2gJrFK9OGryV9qrTcst4JgAAUCN0EPAIe/9Yzu9d
1vBNJakAAKABRK2kPjV0Vkwdd6we5HgVaQ8PdcI8taecYq/3JcdE71YHC16sAACgduhsl856
bZfMIqMpp21SE8XnZFePVQAAAPViYQhPhXD5aNujSmaK6jNfPVbpCOThko1QTpNsSu5CO6ad
5wAAADVETRB1pFFt7/NMEHc3saYmjJtJLgAAqDM6OKheftVC8BLJZr1GNTlVyUzxvZI57lB0
AfVFIbTYdyrQdNRSfeofL9n0HDNkAAAwmraoZGJMubvC77rPpZoo6trlPpINAADqjJrTny3Z
wOGxISzN0UCxzZpln7uckBtSjEV39hdI5oZxlWRmie0mwlR47ZBstkyF2RL7DiEGAACjEWL6
epJkTqMerXDsifa6nmQDAIAGsMDEmOqihyoco1YcOmv27hA2hPB5GcTpYZ6Z4kckm/VSM5EP
23fRjb3a6qtd5Bckc+wxh2cCAACjIA7m6SCfjjLeJeWNMdNjVKypZcYDJBsAADQA3ftSLTR0
4HCV01N+YupC00mKWnK8MNgJm2TgAum4ybNys1RekKYNobpzXCyZ+SLmIgAAMBJiI3aW+24v
yQYB435i2hapjf6bQvgvGdxzFQAAwFixfoi27LgQrrLvqnLwkSq5uFZM3df/qsIxTdYQqhrU
xWs6UrmcZwMAACMgti8L7VU3ddY1Y62Smcnr658kmzl7xRq2vLYJAABgrFFzQ12ipUu1zgzh
Rhm499hXJZs5UzPGK6Xs4ENkkDVjsUHTk15q398m5dmuUoWG8+f2n1MRYwAAMEJiG/R/rNHS
UcWDQpgi2eJntb5Qb77qXfHrUgPPVQAAACNE2yK1IrzBdNMZkjnomCGZt1917KFe6L8o5Ymt
klT2YD+gQVOlt1Eyd8G/rKLh/JFF4ixThWt5PgAAMExiG7TawvWurdndRNmORHwhxAAAoJGC
7D2Smc9fLJlFR5wNuy2Er4TQUaGtyxVW/sQ609VvDd9QDace/zHJnHg8y3MBAIAaizQNrEkG
AIAistyCWnScJpn54sOu3arKiqMpR+lV+5+SlM0Tm3geAAAAAAAwSYhi62ELKaVqTzJcSiO9
GAAAAAAAwASgJvqHGS0AAAAAAIAGgBgDAAAAAABAjAEAAAAAACDGAAAAAAAAADEGAAAAAAAw
scRYdMuor3vZ936fMf2txd5PsdedyftX3bGpT/2qfOyPA1rsPkvJZ5mg9wsAAJO3b1AaxXEt
1kdoDqHL9SOmhdBq3+uepm0h9ITQHUK7fd9tv+nnDdYv2c+de5b9J/63377rtPfiflNmhrAt
hAUh9Er+Fj79Lk69Fsc2u4cWO9d+7rcX3H977Pt+6w/NdtcUO+8U14/qcf2pne5zs4uL2L3v
bmkm7vxT3Guzxafb+m0zQjjAXes5i9t+Odfrtdf4PKZZnLvt+3gen17T7Bw+/jFu8RnG41rs
3FvtuH73zH269ifPotni6//nf4vPqs3i1uziE6/Z4Y6b5dJdj5lnaavH9rl71vudnhPfXndf
Pg6D5SGfvvG/z9r1ZlkcY16S5H28n253rmY7T7c7zl+jP8kTKfF62+zZ9OfkIamQL7or3GfM
d8123ilJOsV0e8Hlk5jH+lw94ePj81XfIPXKjkSbiOuPi5Ubj0+XVnePeeWqr0oNUE0d6I/3
WuugEA4L4aFYvprcny4M4Qz7/LRlSkkyohdr/n2a+fRmNtpNLwxhU5KRu5NM6jNxl0uw9uS7
Xvtvi8UvZqAuq4Ti9bfaqz9mjr2+ZMfNqZDgre4c/e64GL/1doz//1aXKeKDfskKvKbF/kkG
aLXfIputAo/X3phksvTcfe7+troKaKOFfayiiv+dYWnU547112lJKlKflmvs9XXJ9eO5/tMK
00IX30fdd164i6sAY8F72V73tDToc3lIXPw2u+NfsGdxdFL4xf33YHtmD7lKepM9t74kHr4S
6XbXnOHy3UaXRu3uuMjBLm/r8XPt+3XumD/a81rszu0r4q6c57x/8p2+7m35y5e5510+e9o9
5zX27GI+a7Pzdtv3MW+02vsNrrGKz36J3XM856akwo8NVhp/vd6LlhZzXb5a6a7da+Egi1OX
y4NpmexyZXt/+99W1zGbnpSd+Hzb3DNPK8tWF48ui8dGl9bP2D0cbp9bk7IUr9Pj8lksl74e
nGPppnn3r+w665K6cGdSHnynq8Vd43/cd7Gsr7HG/mj7/wuuAxvzyFyLj3bQjrHvXkzSeWvS
YYvMd8/1Odd5i/c63R3b4Tpj8RnsZ/fkebnCd72u3ehwneg+1zmMjfqspHMrbpBQXAc6dvpi
nPe0dNvk6vAtIRxSoV3osHv+K3tWfa4taHfPaaP9Ns8Jgpfd85jj0qXH1fu9ro7Y091Pu6t3
5uV0lny5ONiVpxlJh0NcGZakDux3bWiX5RPf/m9y9U5f0kGd7tq7vd2551gfIbZ18fh97ZnF
NmeulbH4bNotH/da2jxi5zjBnXt2IsZiffG8azfmurphkWtjJSdvS9LubLY8N92lc5ddT/tM
u4Ww3X7bw47vdG36G10c4//3cNd6xX1+xfKMuHwV47Le0uUgV8/+ydI19sHanSjZYMcucnVH
h70eaNd8xdWRPUm6z7Qy8Kxd7w1JesW0f8WeT5u9F1fftbt82eoGq19JyvAMl469OfWzP3dv
8n1PUhf7NI51wHbXN4rib7sd05SIn5hvNM9MtfR6xfU3d7q+SUuS79I+WYt7H9P3ADvu13a+
IxMhOcWJpHaX1n2u39OeXNe3Cb4NrtSvnpUMevi81J5Mrvi09n0vScr+FPtN3z9m9dMCF/9Y
P3e4CZ597br9rtzGNEyP6U7qqRa71l7uuacDGJJ8L067tOcIZnHXjuVqU869tri6OPafnrc6
YqGrI5utfM2wMpdqo5esbjzByttdIZyn54xK7fgQrrKMGDtfkdes0MDISMXIWLPdMsVuNYrL
zpyOjuc5y6gzLa+I69xPHYP8s91l7JlVHP8R14A2Oi/HSn7qEMettNdjhhHfSve23T2H3uS9
DBGXu6xyOXMY99dhnQFxnfoZSdwGy6PVPP89XOPam9MQD5VGrw0zXbty7mEk8fXPwJ+/5OIe
y9Bg19ri7tl3DjdaZ2w3l/ZPWkdigUuzrSauJEnD3gojh7HT3Gpx7Uk6XL3JyGqXi5/vuE2p
Mr1LLr263MBS7MT66+/hOm3+vReYvjPYWiHPb3fx9COe/p4kyQdbcs4XzzMzuafeKvP8TvdM
JwrHViiHM+zZHJnkfZ92i9z3vlzMdAMtTU68iUu/VpfP57tzRKFaqc5Y5J6lJPlit6RTHweG
Ztt9vpaINUnKqeTUBYtcO+vvp8XO3eXK2RvcCLuP+2z77ZVEbC5wM3d7WDjIxeU1N3K/3Tqa
h+a0E62JQPKDeK05AwMtTqRMd/fW5sriHsnAQBxQbrd7fMX9zw+KRNG2yu6vxQnanYkQEReH
rTkC+1m7360WWi1dX7Hf4gzcsyYs+qxOjdd90kTUXLunZ93A3gx7Ls+6Qc7DnaCLwnarE7H3
2zUPt+8Wufz2iutrxefV4oTbrGSgxwuqKKTjwGSbicRK9bLvZ81215jtzt9ugkuF2Ost//0+
mT3ts35MLGtb7P4OS9qtae65tjgB68uZz/NbTAge6AZEZieispq+Vnqv+jzf6gav42TTDDdA
o9d7yp6pH1xqzanjd9p5/EDFVFenvdHudW1ThY7gbVYJLLRIrk9GOuLI/+MWiYNypjKPs9fH
K0x/9iYN5t5u1qrXKUtxSrUlGYlIR/n8CJef3t2YxF+SDsgzLuP60ex0dDqO8LdYXJttdDuO
rvuRQ8+cZISx113/eRvRzKPZ3fdLlunnJvchOaMh6YymJL/tbXHpTWYgfSXSnoyYxlmfOTmj
o5X+u7e79ktuxHueG/nw8d/LjS62u5HVeOzr7bcNdp3NSaW7we4r5pP1Ft/WZPbyJYvrwiTd
YgPTbIWs1+XfvZNZz72TtH1JBpoXtCajx+tduelORqpfSvLl8/b9zyuMmrYnHeWdrtKMs9Fp
mV3nOi+xct7kGqj2ZBZJXDxvdrNrrS7f5s28iovjZpsVONyNMrYnje5m9+zEzVocmMyGt7uZ
vjluxnCdSx9fP81IZqFb3b36+iOm32F2Xl8HiSsf6ehj5DA3Y97l4jAjyQ9iz+UwKZvAxHMd
6uLRb/FtdnlSZKAFQrzH17sZoji6t9mNWmqcnnDp3JWUg3bLA5rHj3BlaborA7Hs/SaZ/ZqR
1OU73IxqjHf8boo1cq0uvnFUVlwZj6OXfna22810d7mR1LQeb3bHi6uTdyQzCV5cpbOv8Vyz
XEerK6nntrq6rS+pW/e2eHcNMlrektSH4vJdc1JHR+uKI9zxMS9udHlspcvDKb2uzD7i2jE/
896VzO7GWfNYfv2s7Z52nWgtsNPNZsZO7+FWTqMVwDxru6IwW2nX8BYs4s6xTQaanomrm+a6
Wa817j63uU5gtJpYn8yCxr6KXv93TqTNtf8tdud7xMqOb1+arQw/YZ+j+Vs0j2xzM01bknr+
GBsNX+nSrMPS8mU3m7zN1Rn9Npv6ggw0z2t3Qsun2TTr+Ps4e1Oy1ISw012rPWd2ZZobYGtO
6sE2J/L2c/n2haQ/kjdLEc8x06VTu+sAz7bnkqZrv/0+zZXh3Sv0naJ5WIubcXrBXudb3F+w
dDvApfeb7Ri17lmbDMrMcM97gROHbfafaAbYN0jHX489yt6vTfqp8dxNUjZPPcC+X2yz5o9a
3u51/4+mdU0uPQYzA4xtXzTdi+aZL7j4dLvntNOlZ5sMNDmMJsizXFu7ux2/uzuuXcpmeV1W
J8Q+ZRzo2j0Rhs1J/1CPfa9piyut7Y+zxs9avnmz1Uvx+e7nxHy0DDnW3j9k8Y3CzucZyXmO
TUkbJe5evdXC20I4MYQH7BrbpGxCuZflnX+xeHTGMhMz2T5ulGJZCDfVYDSskn0lQB5+9MN/
t3tSscQ8FQuGt3vuGmV+axmiIoWRsXwcxHFZna6TrjVtsZmBZ6Vsd99TRdkQ16D25HwvNah/
q1k31OQapCh6Sknno9010lOSzkO6zrjNCaeeKuOX1hMjqXP8uaKJ4ZqCtl+VnsuygpQVX94f
Tn5bWqc4rq3yuI5hpt/qEVyjx66zbATx7Eme+w4notYOM006h/Fb5zD+35mTN3uGmfY97v8d
yW8pvpwPVT7jAGZn8izynkFThbaqlNxnk9VnJXfOnmHkhRVVlO2Si3eTzcTEurVSe1rKSY++
CvWi/75zGHmop8Jz8GnTl6RbvI+1FZ69j3/fEHns+hBudHX12iHyTd69ragiz1RK3/RZl9y1
YzyWunoubWN6rA7ZYGKsN22M1ttBM53STI+RnAgMVhj6RtjA5/3uv6uFg4z0fCL5zkcGa7jz
hEPeQr2845sGedhDpUdThePTa+XdU1OFZygV0jyvo1LpHocjsCr9L02rUnJsX07BqDSCUek+
B0vrvirzyWDPppr0GSrPDfWMq8kjpUHiMNxnJlWco5pnXW25qyZ+UmVeHqz8DJUfqk1fGaI+
bEoapjTPPZyTB5sqNLA+/q8O0tAOtyOfF/9K9+bPUUo6JenvvvEqVehIlXIa+54q2pi8ODSN
sMz4c3XUULRW2xaUKryXCs+laYjXatuvastatflfhmg30kG1Wg0KyCDxqFbQyxDPaqjzj7Qv
URpGP6eavtdw7qU0RP1WTT9HhuhHlIbxPEsjqGOrSY9q+5RDtdulJG2aRvBsBsuTlerYnhGW
h+EOSFXbHsoI4jBYOzKcOiBN/9IQfWCp8vfh1vdNOX3UwdqWyCwpz6RFq46/REqV2mYTYy1V
VmYjzQylEfxeqsF1qzlfaQT/Gez3UoXjS6NIr2o6JtXGe7j3W6rietU+y1KV34/kmZfGIK+W
hnmd0ijy83DL3FBpOdLnPpw0reZZl2qcL2sR79Hkp9Io4yw1vM+xPO9w07BWHYVaPquximO1
aTfc+rnaNC5VUd/Uos0bSf6vFKe+McwHI20rRlJ3j7SfUhrhcymNoPyVRnC+0bRdw+3PySjz
WC37lKVR/qeWdWOt25PR5tlaxG0s+8HDySe1akOHmx/8e2/63J+q+v4RVpQAAAAAAABQGb/m
WdfS9ngxNksqu4gEAAAAAACAkdMrOZNfKsbUs8fdUnYvuzdpBQAAAAAAUDO819IWL8Z0sfJ9
Toy1Cl7lAAAAAAAAxoIBM2OK7n0RN4dVLx/TEGMAAAAAAAA1RzfK1mVinVGM6QaIuvHxkSbE
WkkjAAAAAACAmuE11p83em+S8kZkG0yMtZBOAAAAAAAANWOnlNeM/UoyK8Qm79q+216nS7bf
WAdpBgAAAAAAUBN22GtX/CJvB+ypJsgAAAAAAABg9OhSsH3t/YkhXK86rMkJspfcwb2kFwAA
AAAAQM2I+zovlMSBh/K0vapXxR7SCgAAAAAAoGZMce//vAF0npniVsQYAAAAAABATdlpr+ow
cT/VXH5mrMW9NpNWAAAAAAAANWeXTZ+V6E2RPcYAAAAAAABqR7/TW+tDWBvFWDRV1C9fswMW
xAMCbZLNlOnGZNPsRNEtY2kEEdGZt1dH+F8YPU11TvsmnjUAdQpUTLvhtqXVtqHpc9HPe7n2
ey97VZOZvpzj4m96rd3tmGhB02f9hG47RvsG7fa51XU2xH3fbO/FHaf0Wr9CzzPFjuuUbGF7
u/3Wa8d7q51ZdtwL7jq6LY96g95q5+u30OzO0+7O8YLdxxTr43Qnv/fbOXfase12r8oW10fq
d/9pTq4bmWbn0eN73DH+/9MsHvF7Hw9x3/v4trprikt7n95p/JpdurW6OGiazrX+4KoQZrhn
0Jzc23zLB9sq3Ht8tvr7Ae7+e9zzbLMQ89+25L/i4ujv0T/PfnefzXb/+7k4t1k+0ffqMOFl
d+8+bzQn6ZrXiRapbDm2zT3DGOde9xrjuNbl31ZXhkTKa4nak3us1KlvdueXnDy3zcrvXjn/
b3bx9OndmnPNvPNOS74fKj7b7DnPctf09UK3HTMlJ419GvZXiG+rK49e9Pj80Zvk5/4K993u
/pvmO43j7ORYyYmXr+v8MfPd5/hcmnxlvTiE3SxC14Zwqn1/sH33pxDm2Ymjb/yt9jkmxJwk
AV+yY+daJd5n5+uy/2xKbjz+f1NSAPW/K60QnxLC4yFsdgnf4m76IJeoXVaZPG//bXMVtV7j
dfa/GXZ8XC83xSXWZvu83u5/il2vxV1Pr/PHEI61e9iU85C6ZOCso77fYOcU+/2IJF38sV0W
v/3dw56bc+7WpHDsnXOurZYOvUl697r0iPfRnFPhx3Td257pRvtv/F+fu3arpV2lQj7HxUlc
forHzbPzaF56xD3veK2XLB1b7bvmpOHpteffUiEO8dmvsc97usIcOx/722d/Hp9nYgfpj/b/
KVa5HubuJV63z0K7nSPmgxi3Vpef2u0Zx++67ToxD7e4cjDFju1NzvW8XW+uPadHLY2Od2kQ
G0Kf97vdfe2fU2n3Jmm82SqomJ+Xuzphf3cPyjMuvv6cz1hD2W6hz/Jge3Lffe5eZ+TEp9V+
f9zdXyynfe5+W1xe6rX0ideZ4eqQVlfWxJXXmA+6LO6z7bMvszFtXrTvfEdvp8srU1yaz3Gj
Zq2Wp162V0ne+7zabZ2M2Knqc50/ceeKnUFx71+2uPbYOQ6wtOhxcUw7kc1Jx7ot6TT2Jh2L
/ez5bXHHLrD7XZ9TNvvs2JmuvtJjOuyaR7u8s0+ShjEPbbZO5UxXn/g8vtFd5xD3fbt7v9Oe
7eYk33bZdy+7Z3Ss/ba3q1u7kvopbZxj/Zb+Z4bL+/rdOvt8op0j1k+tltdjnbze4jjHpUef
y9cb7Dx7ubzc647ROO5r3+1wz2OTy5v9Vr9tc32DNtfOdrpnGdOuPcmvvmPXm9Qxf7BztrsO
8qyk7tNn+pyU90Sdbfc91QaWS65+FFceZrvvng3h0BD2sGOjCPR9irmu3mpz/+9w9UVeh9nX
MzFt9zCx2+vSvCVpj7pcHml1fS1xdV+s2318u5P0bHdx7UvEvN7HU64OiPcQhZ46cvu15ZFD
c9oesXq95OqSVru/V1w9HfPH4RaXV1w/K1631c7TlNTRm5OO8+ykXepxn2cn/bK5rp8z1cp3
a5I3XslpN2L8n8kRapUGBfLqu34nPsXFUe/rv+3Y19sxm3MGSNqdSN1WQUT1O+HnxaCPW7ed
e19XV7bmnC+WsWZXjn3btDnpA/rzNCdiZJo7lxcxG+zzQU50+nqhM0nfKYlI3ZnkAUnapSlJ
vzve/2ZrZ/rcwEC3K5d6jsfseYjLa5tz+pKxTZjt4nag/dbt4iSu7Pn6vs/lyXjMX7wpxlGw
2IlSQbbIQpF4nxWSeBPbXQEquVHAKRX+/5q7v9fcf+J3/uE2ue+2u8rQJ+JrTuQtcpXLUNfv
defwvw0W9xiPXtfJ3i3nmDhSNzPp7A2H13LSZLurxCTn2nnx356kVSlJVxlBvFZZxt1/mOd7
yjXS8Vy9STput4o4FvzX3EDFlCQeaX6JxzyXXHf/nPjtTPLxYM97D3eP8X++MZdE6M3IibO/
nr7/L/v+Tcm9+s5BbDTFrjelQj705S/m/xi341yFusBdxwuZNlfJ6v+ecBVUm6usY+fhFReP
qRXySCmpvMWlW/pcX8k5V1r+X6uQx9KysKVC+X8tEeS+IfR1kLgOwlT3P3EdhD1cvHuTzkUq
jiW51h7JfeXdpzjx3l7hHK/kdDy7cxrBtJPZ6vLpRiuPq+y7Y5NOi382W93z73GvvlHbmZST
9L7SQZTdcurMvqRjmM4sxXydloctSTpNHWa9trOKeiytV+bnHPP2nLhVqrO2uA7CTDdbMcOl
4eZESMx2z36mnbPLfp/lnneLG/3e35X3lkQUbEtmjOIsV+zAzrP/PW0CcF83YBY7rE86YbnY
4vyk66Cud3nzSOtY/ck6Xu3JIONs1xHrcEImDvo8a//tt7Ra5wYrD04GsHY44RrjusDy/ROW
p/vt93l272vs2C43aLDTOnriRMZmu699rVN5qN2zHyw/1O5rlesk/yEZJJ7jyu5iO3aB/W+z
3WO8xrPuma2x771Yvi8ZiO9zHXYV7Cdbu3O/XW+h66h3WDp7Qb7DxNsCi8c0l3+iMN5oz+CN
blBym+WHx+244+y3mD7xWWzIGbR+o8W706Wl2DXiAIYfpGi2fLTJia85JjTSActDnfDvdeee
5dq7Rda2brR7WecGa70w6XcCK+bfeTn1f8yPT7sJlCPsWH9//W6CIba36ezwense0y1+/W7A
RNPsrRa33iRtn3FxmWOfm+3emnPakNlusGpD8nxmuLzp25xWy5PPWFk5PDnnIy5PxbrjSSfO
7nGD8Ussjf7k0j+m80t2/g32vw2uzrvPTSpssgGx19t14rX3snQ40I6L/WN97u8N4fomu+B7
bbQtVvw326jIdLvIGjciko6AxZkRcSPhfqQ1NlKvSxrkVvfQNuaMiK6xGz3cJWxUwZsqTFHO
SRrd511hOcgSWNzI0hMWzzmuERE3SzDbjZ7q52NsxlC/eyCEh6zwHpfzf9/YplOdcZr2dTYD
stVN+/rO/bYKJg/T3Ll77HtvAiDJsemIyX6u4y05wiIdddmSFJ7DbKTfp39P0gGO/5/uzEHy
Ogp+dCL+Pt2Ob0tmbPzxaWPuTVP8/W2zgucby9jBm2vHv+iehyQjHC/aqPvLifBpzRFD+9jx
nW4moDfHXEGsAyounvvb7G+vNVZ9bvQvjrxvyMlXsaHqzBnp2unK6E5X6Wo8rk6ukYrO6clo
ubh82u0aoJlJPsyb9t8vaUymJeUiNQHpcQMKeaZAsRHbJ8kXm1w+8yO44uqSP7rvXnD12EIr
72vsvLNd2YzpsadrzGPa7uNG0V5OGoPeZObEj46Km533+aIvGf3vc8K+K2fEfV4yax5nix9z
VgLeOkGss9LqZv+8BUKcoVpnnw+2xqXdOiIb7Jh2F79+N8sfZxMPsnoxdnw32bli53y9fRc7
ir4h8/fkZ939bGTMX8clHc3Y2XyrXeMJJ/IPS55N7GSls9wxjde7NnB6Mnse83Msk4e72XE/
W/eym+2M59jTdXJ6bEZOkvhvdPni4cR0Zz93bJubzWy1NqrNrrPT1Z/x+1U2OBXNDJsTU55m
Zy40TcpmVPtJ2bTtaHvV87zqBhVmSNncMB0Z3pEMOqQ0JYOqwyFeO5pBDdf0M/1/LFs+zbtk
ZKa4eu7dXTuc10fwM9Xpfw9yddWOJA6zpLxspJTUddOsTRhOesZ77kmuUSne1Z5ztpu9lBGm
oS/3/p79vcog/Ytq4lnv5TMxb7xq5fPZQe6j0bTkzLA2iracPO/jeYBr24eT15fX4XkfbnWp
xu+frE3aHH/UgnZTCL+1Dok2EKsHOeHDdU74FQXKkKstrUabJmsLcB+jYa0Um9UFie/qEebr
FaMs8PVoUGKj0TFEHJpG2MB0jEH+WzGGZaJeFXqjiB2HahvjvMZuJOujRtqJapNd10ItG8P0
GU27WE1HtS+n7A3nXB05zyE9Nn1WnRV+W55Tzks58eoYRr1UGkXeSK89knOkcX+1Rh3PkoXB
ztUzRF2Xt/avNEg+8KbYw0mLvpx4do6yzugbpRDz99BZZZwrlRupwXG1pOTu7eE6t9/Dpa9A
cekZIp5rq6h3+hp0T6tdX+NCKa9B+3NEY0PmD/KNZmpG05TzOlgl2DTEeYbqSFaqiIZq4PO+
TzuJpSH+P9hI3WgKzWBpNtT95t2H5Dyv0hD30DTEMxuqIh/q+VfzvKXK85dGmI6Sk06lKv5b
jdAZ6vwywuOGilOldBlOPm2qMu8Ndg+lIfLiSIViU4U8U+m9DCMNBjvHUPmjqYo6rtr7rKZO
Kw2jHpIR1idNVZbbtONQzf3ldWaHWxdXkw5xJiT9vqeK6wz2bJsqdJ4qpWc17eBg6dA0REd0
qDxdbXtWTX6upg2ttq2utfiuZ0e5lu19aQTHlAYpD9XWayPpl9TyedXqnBPdSVBTUscWMW5F
ik+1eapUsPuKcd89aaOaKkWmNMjNlIY5klUa4jzD/a5UZWJXe1+lYcZbalC5lIbx20ifz1D3
UBph/EaaPqURplFpjNKxNMrnNtJ8ONr8VKqyXMoInv1I7qE0irw6nDQu1SD+pVHkj9GW2ZFe
a7T1UGmYz2M0+We0z3ms67KxKCOlUabJSGeESsNsj0s1eoalEeadInekSzU6ZqzPX80zH+t4
Nup8E91ba4m41T0+pQbGe5f3TQIAAAAAAAB1BzEGAAAAAACAGAMAAAAAAECMAQAAAAAAAGIM
AAAAAAAAMQYAAAAAAACIMQAAAAAAAMQYAAAAAAAAIMYAAAAAAAAQYwAAAAAAAIAYAwAAAAAA
QIwBAAAAAAAgxgAAAAAAAAAxBgAAAAAAgBgDmEC0hPChEP4zhLUFKZMl9woAAAAAiDGACckB
IXwjhHcWRIwhwAAAAAAQYwCTgreEMDWEnoLEZ5a9dvJoAABgDFHLkFeFQUCAQosxTKVgIuf7
3UM4J4QtBRFjx4XwnRD+PYRreEwwwctgKfms5bGvwXUC7R1MFtpCuD2EX4RwU4PjsiCEMy0e
iEOYSG1cVTpqKDFGgYCJiubtGSEcE8LGghTa6SEcGcJjPB6YJGgn7CMhdIVwfYPrA4DJxKIQ
TgzhzgK0fSrELg3hQSnGcgGAWrUppWoLQiV0+npaCK0hdJCuMAF5r2QmiutD2FwAQbY8hLus
zAFMBlSIXWah0eVPB2eODuF3UhyzZYCx4rQQVoVwbwHiEmfEFyDGYIKheXrDUKKsaRAhdlsI
bw/h65KZTBXJZFHjspdrMDExgeGg+eQoyUbilE3SOPOoNN/q7MCvQ1gSwgqXv0sNLGuUKxiL
PK9mUieFsD2EBwoQHxWGV4dwhmQDI+R9GOt6VcuAzgrpgODDdbzuISF8KoRbCtL2LQ3hohAO
t7LXKLTvO1uywdk+6gAYBVrGPmfvPy9D+AFoGmSUQiuHc6yxvE4yO96ioGsL3hzCnBCWhbCD
5w7D5GMhzCxgvLZYQ3C1CbK+BseHhgjGCq3D3xDCv4WwukAdn9eR96FOnGf9q7+rkxiLfEIy
q5CugqSDtnNPhPCBEG6VxjmwUiF2t2STEMuEbWZgdGVMy3dVM8+DmSlqgXi/dQjVscCKgmVK
HUG51OJ3XgE6rVA9LQ1+XpqfLyhw+mjaHBvCxZLNSje6zKmHR8yVYSzq8CkhPF6Q+PxIstmC
I1z7SCcMxgLNV6eHcJV11pbV8bpt1gaKFMskXvuYOgFwQwjvaVAcukNYZ2LsRRPI9C1hJH1c
tSxUq4+bbXBh0PZkMDGmNo6/MaFzrJRNporSWdVO6hrJFp+qBzo/DUgjWjxiXvtyCGeF8FGp
70ig92zz1RB2C+E1e51eoHTqDWGbvT/fOoiNFEHacN8hmd3zSRaXRotpGF6ej89xgT2/oqyH
Wmivj7iOYiPTStPm2RAWk8dhjMvjP5oQU5P0C+tcJtUs8sgCps8mez3H+gaNcOjTY89DZ8d+
Jdka7utdX8UviaGfOTHK4licV8vX/pLN9j5aTfvWNMQIyq9NjJ1hgqenYAmptsXnSmb3rA2o
TnGvJp8VkpJVcpfZaEGjUO+JJ7g4qRhrLlDnq98EmTI/hM9KNlrfyEpfTVl0BvqLJhDppI4/
Pi6ZJYHasN9UgPjMkrLn0FUFSiftdKkJc7QGAahVpy/OSmlZVDN0nRH7sPWr6rXuvcWuWUS2
uvcXWPp0NOB59Vg9ebcJQ53h+NcQfpzUCQix8cch1sca63x1uPUtdVJrW7UZbzDUq9Rzks2M
nSz1m0ofiSC72grPuVLfGRcYGnWWcYXlIbWPv7baDFpjMRhnxZQtJipU8KgzmCkFERk7TPzs
tM8fscrj0w2KTxwp1EboSnt2lyHIxs0AiJiwUEE/tUDPbT8TY5e5eBZhpFkH9i6W4lmDwPgu
gyrC1PTu7yzfP2f5rN4D3DortsTaF23z5hQorbRPsN3qqUXW9l3eoOelg/pqqvg9i8/fSzbY
r/WD7gO6CjE27tABwPusDfwbGVuvncfa6yPVtrlNQ/ym6nGNdVgXF0iMpYVghXU4tKP9HzJw
9Ddvc1FGNuojlLUBOk+yEXl1lnFXA0WFcnYI7SH8MIT3Sdle3oufIuTt9dZQRjNKHam/0cpj
IzqsPVae9FXNJvcO4Ssy0OMUZao4Zc8/Bx0J/I6Vv9ukGG6slWiiuKYgeSdeW9eL6GzdSdJ4
a5DoNXiRdVRx+T2+2j9xZfDbJoIi98vA0flSHeoEdXx2QfJdqxTH3E4HHbea+FE+K+X9Bxux
Kbx6eDzVBKxYvLQt/rj1M+80UdYxxPOHxrWD4vqiXzIto3qhewzbEV0O8NYQVkpmXTjsCFfi
ZsuMuqi5iHb0PuPrKIqaeN1gyvQbOQ0Ytr716di8xyr+E0xQPCXZur5G0Wbx+Z51AN9ulem7
JDNTLBKtLh27LO5fk/qvLUjRmeerTVxrZXOHpeGzwkxZEVEHAdF19cUmxopiaq71wnNStqcv
Ut11u2Qz+NqoNtrsfYF1/LRdu0KKYWIK1Qn7Q6zzfq4M9NyrnbSr6thxj+dXE/03Jb/1Fqgv
pB3kTuswx5k7nZ36ozTG3b3Wm2oNstien87aPRnCAfZdvz1bnf34qcW/i+xfuLJ4iPVVtB+l
M9M/k7H11vnXlof/2/pGNRNjuohRTbp0RmFaATtd6ayXOvbYKJk51esl8wjZkXTKtaFdb8dC
bVGTxH8K4R1WmYpVYldKYx1RHGWvOru7yCrVy6wxOqtgeTtW6K9INoL6bWvUNb9+vMFl7ZuS
zRroYMdnLV6P2ADIWmmcS2IYWB8eZ0JMUWc50RtuEQaimmww5CcFzS+/tdeFDRZjJaszdXR1
LykPMn6eclZo4ii8DvRF51DR8kIHQz7doOf3jzLQ4kJ5qUDppib6f5CyiVc0WbzW2pZGrB+L
5ora7u0h2VYcU6zvcI31K06xzv4Uqb9jMhi6HdQB4xbrqyyvwyDIwW6go3M4mW2om3nVOq46
xb6f7OqisUgbLvsNBHXE9ceW+Ke7grzDOt1aWd4qVbicbBCaed5t7/9HspmlviGeXanCMx6L
2UD/3GfZ6IMuWtSNG2cnx37LRFAj0jma+qiN8O3WGJ4m2cJKTc91NtBQJBe/WojVnOwXJmJ1
hvcq61Dr7NhNDSp3cXGzNkQ/tYZSRwzPtLDFicc1Uqy1QHnxmCibxaf3oXX1D0wkX+gahFJB
0v8g66Q+UtD07LG8fJg03jRf4/IOe/8FydataMfvfCmbLU+EPDxYv6Q0gnavEfm6ydpA7Zyf
a7+tsrbm7dbeXJF01usVdxUN86wNWeKETpFmckqujxNn8LVd1sFTtdA6W+rr7CRym2SWPsda
vaBiO3pcXW1BN60/y34vcrmayBZhab74kGRWPD8xQd9Zh3KneeLAWlR6lQrIXVaAj7eMVypQ
RViJtdYB/7YJsk9YRVSyRu0NJsg+I8U1seq2dNcFv80mHOKG3NXufzGW7jtbLE8sMUEzx77r
sQpLUZOMG6vMa2MVz5NttCKahiyU8uL8nRbX5oI991/boMI5NqKjo6mXWKWySsqb5DYiTVdY
2dHRwrhFgDLDGs9P2me9B3UCtLlggzU6cPCCFMdkr5b3dqE1QNphv7qgdZuKnK1WjxWRDhtU
OKwgnZhYzq+x8n+te77LZWISzYt0/bfuQ/dHq0t2FKjPEfOFBh2B/0fL03da3aev0Sywz+qb
Rq3ZVKHwXRsIeZOl698V+Pl3mwhTIXS39ePUoulv6/j8S04YXmbP8yIT11+1shcHRaIoGw9t
xETG1xtHWp+pHrNhETVhPVGydcffHs41q+3M/cwK7gXWsY5rgg60BqKIirvJBNnpVpB0pDia
60RTAa0wN0oxzRX7LBMtt3vRSlRN6XS2TGdL1BZVp/S/b+9bpbwoUQXGq9Y5fq9kThdqaRax
lwmcU0xs3Wod7ugoILLF0r6zQcIhomLrVxaPoyxdfmm/TbFQJDGmM6HHWB5Q0f1+q1R09O1w
a1hXN7CyE6sHdB3pefY5rgu80NLybZLNQB5pncciiILoUEYb1Oh1dSKMFsaBkX+WzOuXdlou
T+r4IonhC6wOXlPgNNWypuZJs6TxJoGl5DleZkJMO4e3yMT1bvqCtWuX2ufN1hG+U8om8A82
8Pn4ARAdNNNB66XW9l5infTfSLa+dn/LTz0NqHN0sHSh1dk6u/RvkllXLCngM99oHdn324DD
S9YHUmuRn9oxH69TfvfPaYXLdw9bv/JHFrfxYpo4y8TCRPUEGTdSVxH035aH1tZRiMU0nmra
Ig6YV3XtpiozolZ26hLys9YR77EOYe84GAXos47J8ybIbjbxpYXnKmvUVkp5TUUtOi5RPPXn
dPK7rYFps8q62QrIzpyOY6uU7U773W9xBkKnzaP5g5r9bHWVlDZcC6yT9tsaN1g6C6YL8H9o
6dZmQuxs+3yoibJbpDwDVWpgHvCL3o+xdInPRUcyv2sNf1HosWerJlL3WKVyilX819gzbUSa
pjPiXzGxdaQJ70dM7K6wTslSqZ/Tn7yy22JxU5OS46xMtpkIeLZCXVdNPVmq8vr16ixofv6a
1QV/Z+kuBRJhnkOsfnio4B2CDZZ/DpFirM/yaaXl6dNWzm6xvP0PrvFvRB6MHRFlm8VR02+a
tV2VZqFbTLzkWdvoLFgceJxtdbf2O253YkwHgHQPqFuT9rbV3sfvvHOFUg3vPXr4+6R1/A6x
fkavfbfOREWnfV/PMhnjd7q1gfpcDnfitlfKXk2LJMa6LS3VhfynbLBB8/on7Dkr9Vg3mT6n
W6yj/z9W1t5rA2A/MaF9fZ07/tWWyzgIeZWl7/8aR2LMe+bemVNXeCutaBVypw2GjKUFX9re
x3h80D4/MtzrVrNmLF5EBYs6FPD7jY2n0TitjDZZB7LXCo4KiDNMkL1LajOD02KVx/tdgySu
U9pjDYl2oH5mwupQd2yc8YppG0WWNipz7Pgue33NMqm+jwtyt8rAha53Su0Xvm6QsiOJBdbY
aKP7Tqs09b5ONCFRNI51z0RslOgxK+RFodlERPTm9hvJzCGWF6jcxa0vvmfhW1bRX+06hvWM
q6/0tHN6mr1qB24PK+s3WRn33h9Lwzx3NcfUujFucyI9vaaK37vt8zvd4EfRZvxifGKH/b6C
txePWT4psimr1genmhjR9aV+gXq9RWLcWqbdOtMqpPZKPou1Y+utDVPBdJL99ox994AJhNl2
zjdaZ/cxO9c8KTuh0Gsvsk7mGdauRxHWZvV8t/0vXT9ZK151gx/HWT0TB3o7Lb8fZp31Rgye
HWP9hhUmypQn7HWTxa1IXrLXW35osbygYuxM63Muteepgkj3ILumzvWXCkSd/bzChFifxe9x
EwGbLZ6NNmkuycD1w1db2fiWlPfZGm9cYwMb1+fkce0nqTXIvjl14Fi1g6Wc9NayrlsmbXFl
bNjqLu/7460hesou9DvrbJ1iGW69VaTjieVWoLQg/coqzWlWoauS/nQNHpye67PWYFztRuNi
ATjYCkaXlM0uWqQ8C/acvfZL2b1rs/usaf5jJ7702N/b/ayw+4vHTnOjlGORKbUQ3GyZMJp9
zbLG9EtSPBtqTefF1sla577vk8aaUaboLN3tTkTrlLeOEB8ixdlrKJpOLZOyuUtsLP/Fvr9+
jK4d1/hts/Kx08SrF2BT3fHbrTP2nP1Py8UBllf3CeFFq+v2c//Z075vdR1KsWfyFsnMjrpc
udVO4t7WMCs31rC8fdw6q6kziSU22KL59+ykvBVFiM2ydIrx0bpBZ82L5tI+RdPUz5h7Jw1F
Sd/o7e1/W5tzi3W4rpNdnT3NSJ5DrdHBtzjjqeXhJXttd4Nf80ygbbJyqmXxaSkPNM6x8jTH
4v+4HaPHHmHnjyPkTe5Z7CZlD3wq0p6Xshlsv917v9UXY8VRVhbvtw56TOcv2XUbsVZM011N
gn/o6oseKVsFdFl5LJIn4W1OjK+2evsUV/ctb1Dd4Z3DaTrqgPvl9v1Nlte+avG+voHpF2eJ
tB/6ASuXt1scx6MIiyLnLOujp6iTjmstn6Se08e6no5LoH5uYvEE64/cIwPNI/eqZlCvUgd0
d+tMHGSV6/ttlOcRq1zFOrOnSTH3HvON5ywTX/fag9Jwq2XUy1xn7eM2+rZ0lNftkLIZQC0K
ZZ/rgKoQO98e7JPWkP1YKjvz6KthpvRiLi5YvtPyxWku833E8sRtBcwTGue5kq2zK+XcU1Ho
SfKODoToDOk7pVgbv5Ysrhda+TlKyvb9P7COVdw4t5YbQ59snYx2q/w0v81PjomeHc+2eERP
mptNWM12HRaRgTPX/U5IdEp5pH2N/XexnafVRF1kpl33lhqUtZhOh1i5fyCnEbrS6oHLpZiL
xzVN77Dytsx1CFdaPp5lDdi9BW1DluZ0CrRz/QsphuMM72DgcmuTrzThcpGUZ4F2t7Jwnx1X
y4G5eC5tU38kY+9+XOvwn8jAtclPWd9kvQ1c1XNNTMkNimgaf8Fde4F1Ir8ujZlhnWb1xq/s
c7P1cWJZ+62931agMtdtzzEugdFZ/4ut/o3OWxppNhzXcavPhG+656rfqdOIf7F24ZoxGLip
VG5bpDy4eLiVETVZn2p17Y+GUb+mcW5xeand8vSjdXoG8X4vsQGEe5NBPt3q4x32HBrhrOpY
C3G94Fn2+rirq75q76OGqlj3Ng2S4S4xsbJEyrNGcTr2KBud0k5Lkcy78jjA4nycjcitsILe
Yh2nJ23ETTPuh+2Bj6bi3FEjEeZtYd9tFZJYY9OIPZ18BnqPxeFJl8li43O+/VZE855j7Tmv
KaAAG4wN1sE4oqDx02ets+ZXWBlaYSLoByYk4nqKWs0+agP9otVNz5tQPcOeb5xN1tFwnS1T
E0UdOf8HS8MeGbiOM64pibPI/a4jcIDVEXGE/wXL49+wxkH/s5+UZ+f0/Vbr8NQqb73N6t3V
rnG82sTvN6XsqEOkeKaJr1q6nWVibIGJr29Z5+oO+/3eApc9vy5I4/73JsaKGM+lNnBzswmW
aC6scf93awefkLFx1z/WbVEU7uda2Y6DHk9YWFtlx7XWbWIcmb/FyqXvD73Z0v7BBuWHTves
9bNa5fzcfS6aB0CNU5cNKESLogetTVlQoLiuscG4tI+z2vpDX7NOeK0FgtZDavWx2J1X+wRz
TITNt+92utdjrC5QwbC31bebpGy+O0fKg4++Xdxk7ap+t5cJzFl2jRVJv28sy5c+91MsT8T0
1hmpr1i7e6oM9PdQT2IePdDieZjVS7+0dlr7PzpDeVc1Ax6D3cBy63z8whr+FVYwrpOyF70/
jYMOrXaM/rdlqqMlW2D3RstUK+2YVsu4J0jZfepoK5XRdvbjf1UQqx2szlDqotWOBjQ6ngtt
9OehpEBqPL5o6frbAnYOm6zi2uIq9aJ70vP56HbrTBXBu1tePO81AbbANfIfNYEWPZnWQpDF
Z7ZCyuujlO9YxRcbor+yRlwr8Jkm1NYPU4h35rxfnQxadSaNcS0bokPsHr7uOqR3WAOrMx83
WaU/W4a5wWQdiWZiTRbvmVbvftY+v1OKbT6jnf8TbZBJBwCek2I5+0nbiw6rl2+wtvsSE2nX
WCfuBhuU6BijeqrW9Wr0VDjb8vpv7P5WDdEW1qNe/7+SrTW/qILA7TZh3ChrBp8euuzkUDd4
UzSTW3GDHqsTQdkl5W2VisBvJX/v1riOOtbN35HaOhqZZn2Afa3vvZfsapIvUnZuE9dVqg+C
DRYOkrLJvdhAxmH23Sb7bm+rt+Oxj1sduL/9roOgb5PRW5ENRYsJ2/VWvtqs3dDwb1L2qhln
TevNg9afXGj93hYT6ZoHvmD9Ef39/1TTxg3lTXG1Zawf2eiPVuxq0qc20SeZiCmqmaL3phgr
7eih50xrmI6wzKwdmT3smPOss3DTCBuVWk9Jr8zpeI7F9YaqzMVGAXVW4Euy67qEeNxzdYrb
cJlnIvweN8JS9IEEH7/f2UiWrwSLJCZ7TDR0JOJEzQi+aoLM74s00o5AaZDrP5xce6kJmHeY
GLvR1VdP2Gjb2gI/fx2E0dm9lyWzRrjC6tzoqCOaQSyx0bfzCloXt1rH4RRXj2mH+m43cFMU
DjEBFk2Q1AT77Vbv7SMDnf8UlU7LC1pfX2x5/yoTNvdb3f3eGuWV0hi2SW1WRvusE/ofMrjF
xVjVhWk922ZpqINPn5DKM43LpXHmrGla6MzJkyZii9g+S05+jPF72Oq66wsSz0qC33sfv9AG
PnRWyg9ElkZZrmO59Z50z7T+TXTw1mr9WrUIUdPlr9Rg8CUOpi228/+uDul8pg3E3CaZNdal
JjQ/bGVulv02T8oO+OpJtwVd+qJmynGZwv+zNkOsza5qLXdTFQ9gmSlnnaH5tn0/08JTUqzF
n9UW+GVOaS+yBjfuiSQmQH8pY2//Xk0BGG3ntVb8o3W2dW3ANRUaqYtNMGwo4HOfb+FxGZ/E
jWiPdGKsKI1pHCWstNfKN230SCusz9lAR0nqY1rQade7yQTNB6xh10peR9wuL6gIP8pEwU7r
9MUtLI6T8lq8t1u++K7l6yKajEcTTxUH77MO9QftXr4hxdvAt9vSWAecomn+OdbwvzjO2rno
WOAnUl5Hop5P/0XKDgiKzA4bkOgo0KBJmw0i6EzdyTI+9ipssuf/sIzP/aV0wOYCdw/jgTgg
ovX0HTJwz6taCFY/E3598qxVkOkA5BJLLx1g+prVxdrm/XSE4vDhOqS/9/VwhX33PktLtXI7
3e75Q9YuigmyRqx7jJNRU+39a5b259nvd8nAbZWGvPGhOlixM3Wc7LpJYIs1tJ3jqGD7e+5x
GUxHzU+wQv8mV4AaKcjGcp+Eaq/v16h8R8pOT/Li1CPFdQUd3fpukvGLOkLQmZAFBRgoyKtA
8yr3JssT51ne0ZFuXbtwSZ3ytB/EiOaTcfPLZwvckVKznJlWwat42c0aoy9ZXXyfNUZPSXEH
wzRdu6zdONDSWjuwU2zgZm2B0t+Pal9uAwf/ah2XS63+iM4PegpeT7S4jtvDNoBzhwx09KSm
Putk7E2NRlun5A1G1jvPeIccN5sQ+xsp9qy6RzuI0SpkPPKUiYgTx5EYixYYat78ZckcrV0i
tZsprWQaHB2cqAj4gRM2r5Nsdknbkg9YWD3MMlDNfpu1Qh3BxWUH8br32WBInIm+QQaajNab
zYO0BdpWfD55NiMWYz6xeyxT3S3l2aPxSmmQkYxldo9n24PWBixOMdfbHLNRHZR0E89LTIhd
UOCGu5pRlnOtgDw6TvNtnHlSD5pqGvPpApapwUyW4ubrK62jK06QjeWsb6lCWS/yAJI2OGfk
fK+dwH6p3ShrPVCzRJ1ZmmrCcop1ru5tcD03GFrOdDbpn6wDo22CztCok5rpUt73rahcbJ0t
tWT4nQ3cXG3CMjqn0eegSw+6rYNYtEGJ0iCf6zWI44Vf3M+vz9J2bQHa6mo52vpwq8Zp26dp
/ozVidc2SJCPJM4xb2i7p46m1FwwOizqGWW7V6qinfMDTNdbWGKCbEpB+6TRU/encn6LW2np
Vg0PSOMnK/qk7PwkbjX1mgnIL0p5wLxUbYVTLR12gR+7B6kCZZpMHGIBj8pbnSZ828RZj0wu
DrFnvcga96XjoAKsVHmolzudZbhHxtcsbh7qOKWojjyqKVvLTUzqDJnauF84CcvWULxZylYI
Wslvt47gD6Xy2tGissY1UhG/trCodcq1JsjUScM8E5NaFz7nGuAip3mLlbEOE5dzpLzQv2T5
aqa1b2vtuPFWv9ej7SiZII959vxxmFa6XuwxKZY1xXDRduNcK4sd4yyfal7RmSp1gHGr1eMX
y65bvtSj/Y3+B5oKlId9PHT2+QdStgqJnoq/b/3R3xbs2euSnGPd592cWBx2IgznOC0QarIY
TdV0hHD6BKyARcpr5T5lnaPlMjkoWQdZO/w6Ev93Mgy714IKgOMn0PN5wp7LO8bZc/GjmUut
gr1ZyjPRCLJynr3YCRgV37rObnWFxqvo7JTydgNiYuZ3Bb+PFhvo+K51nkrJPRRdjPmNcXUk
/i0mxnRGcq5rzzV/zZfMGcWHKYO5aFv4PcsLn5Gy84TxVJ+o04VfjONn0GQC4lnri43XgYOr
rf1WqytdY+T3Aqxn37aos+Bxu5NF9rnX+gffl4H74xXpHmYkn7dIeR/bMRFj/sTp+rE9J3BF
/GVrjLsnWWfwYOuQxD0c8vLBeBIA0eRr5QQYKFhnjdL+E2CwQx0iqMmi7p2nprAPj0OxUeuB
g0usbt1i7/9dKnsZGw/0S3l7AcXPihX1PmJ6L7WBAvXqtV3KG4w3j4N073SvOvMVt0E4ye7p
fU5cnmmCLB2tn6xlML7X9v9SE2JfkF2dJxT9XhT1YrpwnAvtmN5xFmLpOI1/dB6n5e5268if
3ID8VCpYHo1x+pI93y3WL9C2r9IG7qWC1BXRpb4ObOms2P0ywnWNIxnh0UKtm7hGE7YDJ3Cl
XHKjMJOlg6j3qG6Qb5FiLbAfKbvbq3am1k+Q56MV+kU2UNAxjsuXCv2PWV77iXXUr5fJSdxA
Vjt/t0k2uvbwBLivWU6I6czMz8ZZ/NXUTx0HtNrntnEixiqJTJ01UxMaHXHWRf1nmPg/z34f
j7M/te6kqmj9jqXJdTJwbWtpnN2LmujvlPG7Xsy3F/dYG3GIjJ81s3nca0EHQT4q49fyqBZC
rGR1qpY1NUONHghXjEKj1LN8PWOvu1n79pUkz46pGGuygqAV1M9l12m6iVQpF3E0oR6FJPWK
OF4FWZOUPRq1WWGZCKJa14TMl8zj0OXjvHwtN2F5u3V8ZJIKMvWSqSbRn6vQOE+EfKveCTvH
2b2stg7g1fZ5ioxs8XvROkHR7P4mGwRQc/QLTIjEzVQnYwdxhvVttHOoyzGuKXincCgBo/tS
qmXPhgnwfP7DyuLR41iMxf6Vmr/eOUGey2j6AZoOOuCle+C9S8ozYX5CpMjthZ+MilYfTSPN
GCPtSOnompp9zZkkmWYyFZCJcu9+L46JxFore7o33pcnQP5cZh3BJTIxB3eGIpqPfUsqj5KO
12esHQ+dlVb7/1vH6T3oLMm7pexJeDyvk07zUdyPTBfN6yj9pXa/0WRxsnUOvyblGbFrxnn5
03pFnY/8YYK045ofdSBSZ6qXjvN7id67Jzv7mxBL10WXxkHZ0/I1z95rf+zB0cS3aZSZSm2p
1etU0fY9ApjIaEWu7s3nTwAhFke9tDL+K1ehTSa0Q6yjgttk4plD64z0VBOaneOwYxtHsq8z
ManmKBNtADLmubiuTO91fSJGJgs6yPyS9WtkHJfHknUU1aT2h+P8Xjy6vlgH7sa7qeJkJ+bD
q10bON6YLeVtTpbJKJ2xjHbq/X8kWw8wHzEGUNfOU8cEKXPRDCFuyDxROg0jEdgTkb+x13vG
ef7UkXidGdMZo+kT8DnFMvcjyczaNk7SenWZTJwZC92UVgft1k2gZ6SuzXWd4zSBiUDfOG7z
j5FsZk/XZP6xFpXPaNARQ12I2EqeAqhrB3Ei3w97HU2czq3OIqlb4hcmQP68UbIZzNYJXP46
ZfyagI1FvTqe6yLt6K6dIPcS0QG7k4U2gj5N49H1YmopoevcHm20GNOReXWTuzt5CQAApDzK
qWZSusfRRNhsPbZ3ug/OYcIGyQCNrFsof9Bo5tprr9TAMVVTjQoGhQIAADyfkMym/hcT6J7U
5bI6ztH9m9gkGaC+lJJXgEahW/JMtzZh1IMDTTUqGAAAAB7dtFNdqP92At2Tmn3dJ9k6AQAA
mJyoyex7anWyJtITAADGgIcnWDuj99ElmQewPh4vAAAgxgAAoOhMlDUemEgBAABiDAAAxoVo
Geo7AAAAxBhJAAAAAAAAgBgDAAAAAABAjAEAAAAAAABiDAAAAAAAADEGAAAAAAAAiDEAAAAA
AADEGAAAAAAAACDGAAAAAAAAEGMAAAAAAACAGAMAAAAAAECMAQAAAAAAIMZGf94SyQsAAAAA
AFBfMYYQAwAAAAAAaIAYAwAAAAAAAMQYAAAAAAAAYgwAAAAAAAAxRhIAAAAAAAAgxgAAAAAA
ABBjAAAAAAAAgBgDAAAAAABAjAEAAAAAAABiDAAAAAAAADEGAAAAAAAAiDEAAAAAAADEGAAA
AAAAACDGAAAAAAAAEGMAAAAAAACIMQAAAAAAAECMAQAAAAAAIMYAAAAAAAAAMQYAAAAAAIAY
AwAAAAAAAMQYAAAAAAAAYgwAAAAAAAAQYwAAAAAAAIgxAAAAAAAAxBgAAAAAAAAgxgAAAAAA
ABBjAAAAAAAAgBgDAAAAAABAjAEAAAAAAABiDAAAAAAAADEGAAAAAAAAiDEAAAAAAADEGAAA
AAAAAGIMAAAAAAAAEGMAAAAAAACIMQAAAAAAAECMAQAAAAAAIMYAAAAAAAAAMQYAAAAAAIAY
AwAAAAAAAMQYAAAAAAAAYgwAAAAAAAAxBgAAAAAAAIgxAAAAAAAAxBgAAAAAAAAgxgAAAAAA
ABBjAAAAAAAAgBgDAAAAAABAjAEAAAAAAABiDAAAAAAAADEGAAAAAACAGAMAAAAAAADEGAAA
AAAAAGIMAAAAAAAAEGMAAAAAAACIMQAAAAAAAECMAQAAAAAAIMYAAAAAAAAAMQYAAAAAAIAY
AwAAAAAAQIwBAAAAAAAAYgwAAAAAAAAxBgAAAAAAAIgxAAAAAAAAxBgAAAAAAAAgxgAAAAAA
ABBjAAAAAAAAgBgDAAAAAABAjAEAwCRoY0okAwAAAGIMAADqy+4mxmJbU0KgAQAAIMYAAGDs
6QthQQh3hPDzEK4hSQAAABBjAABQ+7bEz3i1hPDuEP4+hGkh/JpkAgAAQIwBAMDYclQI/xTC
OSHcG8K7QujMEWwAAACIMQAAgFEQBdasEC4J4dwQZoawJYQbQtgWQpsd02yfXw1hhnu/Vwg7
3Tn7qmi/EHYAAIAYAwCASc+SEK4O4Vj3nQqyO0PoDmFzCDtMdOlrfwgH2eufQtg3hF7336cl
M3WMwkyP67LPR5ioeySEn4awluQHAADEGAAATKb2o2SC6bIQPhtCTwjfDWFjCFvt8xQ7Xme9
dHbsShNp20N4MoQ/hPCSZGvKZtixvU5wPRPC3vb9whBa7fsnQviABZ19WypDz6YBAAAgxgAA
YNxTMnF1XQjnhXBbCJ+X8tqwFBVt3zEhtiKEz4Wwxp0r73hJBJa2Weou/1X7j87EXRzC9yRb
n3Z+CB08GgAAQIwBAMBERYXSSSF8JYTZks2MqdDqqXB8XEt2th17nQw9i9VXQQCWkmOiu3wV
ZsvtOstdG8e6MgAAQIwBAMCEYIGJqTMl85SoAmuw2agLQ7jUjjk5hFVjIJBUkK00Qab7mels
2Y0IMQAAQIwBAMBEaS/ONaEz215vkvIMVjoLpe7tPxnC+0K4NYSrpLIJ42jiFK+ppo8fDeHb
JhbVOchnhHVkAACAGAMAgILV/aVh/H66ZOuxFodwi2SzTp0Vjtf3n5BsNkzXhz0Wwg9DaA/h
AMnc3ev36tDjBckccsw30fSUncObO6pJpG4avc19FwVWeg/qVVHNJ78qmTmkenH8sh2HySIA
ACDGAACgEPV+m1Re4yXumC+F8HHJXNN/TMrrsTxR5BxiQuzv3W86i3anlB1ydJswi++VuZJ5
UNRr9MtAF/fRe+IGydzi6+c/2XHr3THqcXGTlN3fbzdBdphkjkVwfw8AAIgxAABoKCqcdKbr
g5J5QazkKEOdbtwh2f5hujZMzRI7pOzRMP2frg37hmQu7fXYNXbM9BD2DOFlO25PE3n6/TPu
/zrr9rQJxBNMvL1kQqzbBNpiE2UqvtQM8e0hTJVsRu0BE3kqvuZZPJQz7X9qYrmCxw8AAIgx
AABoFOqAQ9dV3S+7uo2PM1ynm6BS0XOGCR1v6uff62yYuqlXRx53S+ZhcSTu5ZdVeD8YHwrh
+5LNqN2YXFfvc34I+4RwlmSzc0OZWAIAACDGAABgzPiIiZQfJ9/HfcO+ZELsNsnME/uS9sIL
svdItuGy8k4pzzzVS+DoRs/dJrJUCL5fyuaIHU6c6W9qPqmOPY6z4zppAwEAADEGAAD1rPN1
lugx2XUNlXo/vEIys76VJsj6ctoJFVk663RzCG8K4d+kPBvWiFkmXcO2xMSlisHUHDHG6foQ
/mjC7SYpm10CAAAgxgAAYMyZEcIiyWaIoqlenA07QjKzROUPkq3dSsVVkwkfNfXTNV0XSDY7
5YWaNECQqbBU08qvSWaOeJEMNHWM96HC7V2SbVD9/8lAhyRNDYo7AAAgxgAAYILX9Soy1ETx
tRAese9VWF1t7z8dwmkhHCvZGrFUmKhou8bO8TMTPJ1SnDVXOst1nmQeFG+2+N4k5fVtsb17
WDLHHypAdTZN90D7ghOfAAAAiDEAAKg57w7heck8En7BBMl/SeZ8Q70W6loq9Ux4b/I/FW3/
LJmb+kulvNlzkdqQJovT5SGsk8wM8eAQrpXyLGAUZfpZ18NttPvRWb7zhVkxAABAjAEAQI2J
Xg9VTKkpYtz3K5rz6ayQOraYL9lMWXTaMcsEm+4bdpdkM0qdyXmLdI8RNZ1cb/epZomflMwc
0W9Mre91pu+nknmX/LIJOd82Is4AAAAxBgAAo+ZtIcwMYadke4B9XTKTvchie43OL1Sc6dqq
uMbsKhl6k+giofcW3e2r045TQ1id0wbqerPz7biFku2XhskiAAAgxgAAoGYcYa8fNuHh9wrT
V91PTL0sdpoI+0AIqyTzsrhunLZvq01U3mD3/FEZ6GkxznzperPPhPADO+58wdMiAAAgxgAA
oAaoK/rFJrZSIaYcFMIxIWwN4Y4Qpkh5tmi8murFeKu4PE8y80td96YzgstcGxiPW2HCTe9f
TRovsVdMFgEAADEGAAAjRteLqbnhZTLQ/XwUI4eFsIdka8ZUlOgaq7UTqJ3TNXDqLVLd33/F
7vebsqv7fhVuatp4ewg/t/S6huwDAACIMQAAGClL7HVNhd911myKiY9rZVdHF+MZLzp1pktn
/34imRt/FV6pOaIKNDXlvF+y2bRWGejUBAAAADEGAABV1/OnhPCc5M92qVdFNc9bmQgxkYlj
mufFpTr2iBs/32ECdIUMNEdUQXabZHuu6e86k3aDDFxvBgAAgBgDAICK9bsKC10PtsjExYYc
kaJrxQ4N4Vsy8ddFlZwgUzf9X5PMtb2uj1sm5X3I9Lj/DGF7CL0hnCzZTNo/SLbHWprGAAAA
iDEAANiFt9nr4xWEw+EhTJXJMevj27xOE2GbJHPq8WKSBi/Yq5orfiOEKySbHds/hFsFb4sA
AIAYAwCACkThpSaIr4Xwx5xj1ERR15M9J2UTxok821NK2j/9rBs967owdWsfN4dWdD+2J0OY
Z8Ls/ZJtDH2ZvT9NJo6TEwAAQIwBAECNUS+KJ4TwfAiP5vw+236/U7KZIpHJY3bn7/OREC62
dNBZMvWgqA47fhXCp0Jol2wdmYqxJ0I4i6wFAACIMQAAGAw1UZxpQqNTdp310vViOiv075M8
nXQtne7B9msTX7pB9kWSOTW5zERth6Wdri2718Qaa8YAAAAxBgAAA+p1FQhtIZxh3z2Y87ui
XhafCeHZSZ5mev/dkpko6rqxWyRbK7bOfj81hAfsfUnKbu4RYgAAgBgDAIC/EAXCAslmvp5y
YitdM/VWyfYe20ay/XmG8IMh/G0I50q2huwc+009L+4lmakiAAAAYgwAAHapz2eE0GWi63jJ
vCTeI/kbFuuGx/NDuFnY0FjFaK+JLnVqorNjJ4XwxRDeJ5kHxTdLNnOGaSIAACDGAADgL/V4
FF83hvBRyfbR+rD9ruueZoXwJfs9egDU2R/1GLiGJPyzGNU0U8+SuifbasnWiJ1v6XeDidfl
CDEAAECMAQBAJIqDVhMSum+YmiUeKWWX9eoN8ALJ9hrTzzr7s1Ayszv2y8rQvcPUZf0HTIxF
dJNnNVdcbKK2k6QCAADEGAAAeNQNu+4ndqxkZnViQmtzCFNCWGW/3WRCba5kTirYKytrCzss
6IzhjYlI/blkLu91G4BlJBcAACDGAADA82oID0lmTtdr3+lMWJ+FP0jmsEPRDYt1Pdl9JNsu
glYF1zGJGFNvlNdJNjuGGAMAAMQYAAAMQM0V75Js3ZMKLV0P9oj7XV2zq4OKD5kY2yIDXd6D
yI9CuCqEA12aKussbfcmiQAAADEGAAB5rDERpmaJap64yv32HybOvm+/3yb5G0FPViGr6bDB
hNfCnN91llE9LOp6uz6yGgAAIMYAAMCjs11qXrfIhFmHq+vVWccmE2Ji7wUhNkBwKU9IvrMO
9aqozj1mC05PAAAAMQYAAAmbLagY63b1fBQauqZMvSruJtkMEOyK7jGm6+72S8SYOjrR/cj+
WjInKAAAAIgxAAD4C36/LPWYmJrUrTIh9pjUd73YeDKF/E/JNs5WU0Xv4l6F2e9DuCiEHwgz
igAAgBgDAICEuF+WmtMdIANd1+uaqJUm2Oq5X9Z4Ei46Y6hr606RXT0n6rqxj4QwTzJTRdbb
AQAAYgwAAP6CioSfhPAxydY9rU1EkQq1XpJpUOGoYux82XVm8ZeSmYFGU0WEGAAAIMYAAGAA
y0P4lGQbO+eJtVj/IybyWWnpd6Zks2MxrTTtdEbxVBNjpCEAACDGAABgALrW6fkQTgxhKXX/
sNtFdeKhM2AnSNlUMQovXTf21hDaJPNQCQAAgBgDAIC/oCJBTRXPDWGB7OqKndmcodH1dW+Q
XU0VfxHCWSEcZaINAAAAMQYAAAN4OoSZIcwX9sUaCc9Itt9Y6gTlUclmxZYgxgAAADEGADC5
WWKvqTBQF+3bQzjdfmN90/D4d8mcoByWiDFdM/YzyVzfk6YAAIAYAwCY5GLsLHv17urVRfv9
JihuFGbHqqVkbaPuxdZrYix1ca9bA1wXwvX2HgAAADEGADAJuVMyd/UnJKJBRYXOiJ0j2d5Y
lwszOcNpF/ssbVWMpevG1tjrYsQYAAAgxgAAJi9qQvffIVwawt2J2FJTxedCaCWZqsann24R
8M8hTEvEmKb5UyEcRHIBAABiDABgcvN4CG8MYa8QdjhRoaJBzRPVxb1uAN1JUg2LfUI4MoSj
TZhFtoWwXjLz0M8kQg0AAAAxBgAwiVCzOTWlWyRls7lokqifL5NdzRhhaM6y1w8mYmy2ZA48
ZppYw1QRAAAQYwAAkxR1t94dwrtNGPi6/R4TY4chxqpuF1XEHiLZbONzkpkj+k2e55vwVU50
ac56PAAAQIwBAEwy1PxQzebeJbt6TnzKBMVp9humitXxThNf3wvhyhD2s886A3lhCPeGMC+E
k0K4FiEGAACIMQCAycsvQjjTwvXue13P9JMQLpZstgcxNjhRVKkZom4PoHuKXRTCWyRbg6dm
iW8P4WQTuJ8N4XhhA2gAAECMAQBMynpcBcSqEHZKvufEFSbGTjcxtlYwqxsqTdtDuMHSSx12
nBrCTZK5s98YwrMh3CeZCegSxBgAACDGAAAmH1FQqROP34dwRI7Q0jVlK0M410TDWpJtUD4q
mQlidMzx8xA+FcICydaPPWEirSuEuyTbWPtWYWNtAABAjAEATFpR9l3J9hs7KBFcKhx+Jdks
TiriYFeWmBCLLusfCOFLku3jpp4Ub3FpqCaM6vq+m2QDAADEGADA5OV3kjmYOFrKpohRNKyz
98dK5qYdM8V8dPZLtwH4mPtOZ7w2S7Ze7DUZaJLYKQPd3gMAACDGAAAmId0mDtTd+tJEbKm3
RV1Tpk4nrhY2Kq7EMZaOfmZxhwmy+ZKtzcOVPQAAIMYAAGAA6npdzRF1fdPnZaDnxKdMUBwo
2R5Zq0muXHSj50dk4PovFV26NkzNF29zQhZBBgAAiDEAAPgL6qhD3a2/QzLvf1EwqFD7TQh/
b4IDMbYrsyTb6PmKnN82SbZf238mIg0AAAAxBgAAf6bDhNcSE2NeMNxiYkw3Kv6mHQdlTrDX
R3N+O9XS9lmSCQAAEGMAAJCHrnW6P4Tz7POVUl7/pO7v1VxRnXgcJeyN5dtCFa2nmEB9Nuf3
N8hAD4sAAACIMQAA2EVUqCv2D4ZwjmRmd7p58Y8kW0Om66F0zdjfhPBbwdROLA3URFE3dP5X
E1zeE6VuFXBACNeTVAAAgBgDAIDBeEiyDYnFBNjXQzgjhPeH8I0Qzg7hrSHs7gTHZEdNFOeG
8FOXJrGNfKdkru0fIpkAAAAxBgAAeURRpULsScn2zFIBdohk68XULPGSEJ6RzKuizvbE/cgm
uyBTE8Vfy0CX9pombSZkf23CVvdxw1QRAAAQYwAAUFGUqYv7JSYmltv7b0s289MbwtQQ3pKI
j8mKppFu6Hxdzm+6tu5QyVzaK6+SXAAAgBgDAACPzti8O4SNks2A6box3dz5eMnc2KvoUvNE
dXt/mfsPiLRLttHz/+T8dngIW0P4GckEAACIMQAAyENnbE6UzHGHCq6bTJRdZO/1d/UUeHkI
T4RwcwgfDuFBYXZsvmSeElfnCFw1UfyNDNxAGwAAADEGAAB/QU0TL5Zsc+JLQzgihFYTGseZ
MItrw5aF8LJkM2RRsC1z7cJkWz+ms1/rcr5Xr5NvCuH2JJ0BAAAQYwAAMIA486UC6wcmxHaa
KEvRdWS6ubHOmt0hmTfBz8jkck6hbeBeks0ofj3n9+MtTX9H1gIAAMQYAABUU6erGDtNMocd
Syyo+PLu2vW9mt69V7IZMg26burLMnlmf/Q+dfZrYQhbcn5Xkabu7DvIWgAAgBgDAIChxEVE
14GpW/tPhPApyTwo3inl9WHRHFFnwnQ2baWJNzVpvM7EW9pWTASR5s0w1YviP0q2EXZH8vss
qTxjBgAAgBgDAIBB6/dOE1q6HupaE2fnSuasImW5CZL7Qvi5ZJ4YrzaxVppAaRLv5XTJ1tjp
rOGHc9rEj4Swh4lUAAAAxBgAAFRNyYmPpZK5bb87hJ+EcKrs6jlQj9VZM50Z+5pkZouHhXCh
TBxPgnET52tCuCCE3UJ4TrK1cyknhfAfFYQrAAAAYgwAAIYUH7GuV/EV15H9awiXSNkU0c8Y
qfD6WxNueqyuP7tSBnpb9OceD+1cjOsSE5m6ibOaH54lmZv/tck9LbFjrpBsZnAyepgEAADE
GAAA1BAVHWqep+aHP5XMOcUnZdd9xpqkbLaogkxdu78sZScg402Q6vovXTv3McnWh+nM4FOS
zQKuT45/Twg3SOaBko2eAQAAMQYAADVDZ3p0VmxDCFdJtkbso5LNgKXtg4q0s02M6Tqye2X8
mS0eFcI3QphtYizOBkYvk9e5Yz8UwvdDmCKZd8V+J+gAAAAQYwAAMGxKOZ+vD+FBydaHqZdF
v/GzR/fZUgcXOmOk5ooPO/FWRPO9GKcWyRx0qCdJnQF8fyIiPxjCY1JeL6b3d6MJMeUWu3cA
AADEGAAA1Byd+XqviZYrTIgslYFrzaIg082hV0m23kzF27ukWM4togiLTjo0vufYvd0oAx2a
6OuRFv9tIXxVslmzb4XQLpknxXvIHgAAgBgDAICxRM0W1bug7kN2pYkUdYOfZ4qoTkCWmNBR
r4xft/d9BbgP73zjRnuvHhFX5LR3B0m22XO3/T5NMpf/K0yg/Zdka8oAAAAQYwAAMOao2aI6
t/i/Idwfwhdl142fSybS3iGZWd+lIZwhu24SXe92LDrpuMRElZoYflMqmxm+TbJZQBVud5kI
1VnCQ0I4VrLZtD6yBAAAIMYAAKBe7YHOCqn54R2SmSLqzNc1FY7X9WXqFj5uEq3rypY2IN4q
xNQr4g/sc5zhyjtOTHDpHmOvSWaWeJkTXm+xV4QYAAAgxgAAoK6iRtsEnfk6WTJX8Jfab9+R
/FkmnU16g2TeFtUL4U7JdwIyVujasI9L5qRDZ/V0Rqsjad+8gxHvtv4jOeLxVHudTnYAAADE
GAAA1FuQRaLZos44LZZspuxAEzIRdXax0d6r2d/NIRwWwvMm3l62314n2WyTOgBRd/Gz7HcN
zZKt3Ypu5He6809z3+u1Nkt51kpnw75q36eeIL2jDkU9K15mok0dkKgZ4+qctnCTvc4lKwAA
AGIMAAAaiZot6rqqr5nQmmrfbw9hq5Rny1Qw6dqrGSGc5USV7mW2UDJnGdudcGuXgaaA0VlI
s52r10RfsxN6yjb7TTlUsrVtZ0vltWEqyNQs8QoTiZ+TzOFIJb4Qwkopu7sHAABAjAEAQMPa
BxVKfxvCA5KZI/5esj271BywxY551f1vdyegdtprFFUqsOaHsI+UZ82UPZPP8bsX7T9zJDMd
1JmtmZJtyKzOOpa6uJYSEeZnw+43Udkp+eaLcRatx87ZZP9n7RgAACDGAACgruRt5LzMBJO6
vVcHH7rx89oKQkickEkFTccI4/QhydaIqXOOT9q1U/EVr7VAspk8ff2cCay+Qe4tT5yVyAYA
AIAYAwCAoqDu61+QbN2ViqKPSdmlfdMYCZijJDMzPE0yJyFqStiTc70+J9qutM9qwrh6jOMH
AACAGAMAgLqg4uZ/hfDPkjnCGKuNn7V9UlNE9eio68T+QcrrvfLaLl0b9jkTYBqv6LKedg4A
ABBjAAAw7lCvh++w91FsrZdsLdg6ydZv6YbP80wARc+H0cmGOtzQ9WRxRqol+VypXTpeMg+J
Z4bwmGRr1FKzRI+uB7tRMscg6pJ/6SDHAgAAIMYAAKDw6GzTNyRzorGblL0oqqhqM1Gm7Yju
9fUuJ9ii4w4VY+q8Q70q7mViSd3Y77Dj9Lsuybwwxu/2DeEAE3pi5/lcEq8+E3563iOkPBum
69k6eWwAAIAYAwCA8c5zIdwt2czX4yZ4xATWFBNlKtR0Jmyuia1H7Pu59jpdyq7qI+ru/vUm
pu6TslfGPvtfnFlrdccrL4Wwdwhvl8wr42shPBHCuVJeuwYAAIAYAwCAcY96PvzbgsVJTSfv
MDH2rRCuksr7jAEAACDGAAAARonOnqmnRHXoobNt6qBDzRLjHmGsDQMAAMQYAABAjdHZsBtC
OEcyl/rq5n4tyQIAAIgxAACAseP0EL4SwqIQvivlfcY8zIoBAABiDAAAoIaoWeKtkjn0+BvB
SQcAACDGAAAA6iLEbpfMY+KXTIixNgwAABBjAAAAY8zvQrhaMtf1y+w7hBgAACDGAAAAxhjd
g+xykgEAACYy/z9xxsSKP1lvmwAAAABJRU5ErkJggg==)
Рис. 25. Для проверки предположения, что в действительности отражение происходит и на концах зеркала (но просто нейтрализуется и сводится на нет), поместим большое зеркало в неподходящее для отражения из S в Р место (см. рис. 24). Это зеркало разделено на гораздо меньшие кусочки, так, чтобы разница во времени для двух соседних траекторий была невелика. Сложение всех стрелок ничего не дает: они идут по кругу, и сумма их ничтожна.