КЭД – странная теория света и вещества (Фейнман) - страница 41

стрелки обратно пропорциональна расстоянию, пройденному светом, – другими словами, стрелка сжимается по мере распространения света[10].


Рис. 46. Для более точных вычислений следует рассмотреть и другие возможные способы отражения света. На этом рисунке сжатия до 0,98 происходят на этапах 2 и 10; сжатия до 0,2 – на этапах 4, 6 и 8. В результате получается стрелка длиной при-мерно 0,008, которая соответствует еще одному возможному варианту отражения и которую поэтому надо сложить с другими отвечающими отражению стрелками (0,2 для перед-ней и 0,192 для задней поверхности).


Рис. 47. Если один из способов, которым может произойти данное событие, зависит от некоторого количества независимых процессов, амплитуда этого способа вычисляется путем умножения стрелок для независимых процессов. В данном случае конечное событие таково: после того как источники Х и У каждый излучили по фотону, фотоумножители А и В издали по щелчку. Первый способ, каким могло произойти это со-бытие, состоит в том, что фотон из X мог попасть в А, а фотон из Y – в В (два независимых события). Чтобы вычислить вероятность этого «первого способа», надо умножить стрелки для каждого независимого события X – А и Y – B, получив таким образом амплитуду именно этого способа. (Продолжение анализа на рис. 48).


Предположим, стрелка X – А имеет длину 0,5 и указывает на 5 часов так же, как и стрелка Y – В (см. рис. 47). Перемножив стрелки, получаем результирующую стрелку длиной 0,25 и направленную на 10 часов.


Рис. 48. Событие, обсуждаемое в подписи к рис. 47, могло бы происходить другим способом – фотоны летят из X в В и из Y в А. В этом случае все событие также зависело бы от двух независимых процессов, так что амплитуда этого «второго способа» вычисляется также путем умножения стрелок для независимых событий. Стрелки для «первого» и «второго» способов в конце концов складываются, давая результирующую стрел-ку всего события. Вероятность события всегда представляется единственной результирующей стрелкой – независимо от того, сколько стрелок было нарисовано, сложено и умножено, что-бы ее получить.


Но постойте! Это событие могло произойти другим способом: фотон из X мог отправиться в В, а фотон из Y – в А. Каждый из этих подпроцессов имеет свою амплитуду: надо также нарисовать и эти стрелки и перемножить их, чтобы получить амплитуду такого именно способа осуществления события (см. рис. 48). Так как величина сжатия, связанного с расстоянием, очень мала по сравнению с величиной поворота, стрелки X – В и Y – А имеют, по существу, такую же длину 0,5, как и стрелки