имеют, по существу, такую же длину 0,5, как и стрелки X – А и Y – В, но направлены они будут совершенно по-другому: часовая стрелка делает 36 000 оборотов на один дюйм пробега красного света, поэтому даже маленькое изменение расстояния вызывает значительное изменение показаний стрелки.
Амплитуды для каждого способа, которым могло бы произойти событие, складываются и дают результирующую стрелку. Так как длины стрелок, по существу, одинаковы, имеется возможность того, что стрелки окажутся противоположно направленными и взаимно сократятся. Относительные направления двух стрелок можно менять, изменяя расстояние между источниками или детекторами: просто сдвигая или раздвигая детекторы, можно усилить или совсем уничтожить вероятность события, точно так же, как в случае частичного отражения от двух поверхностей[11].
В этом примере стрелки умножались, а затем складывались, и в итоге получалась результирующая стрелка (амплитуда события), квадрат длины которой равен вероятности события. Надо подчеркнуть, что независимо от того, сколько стрелок мы рисуем, складываем или умножаем, наша цель – получить единственную результирующую стрелку всего события. Студенты-физики поначалу часто совершают ошибки, так как упускают из виду этот важный момент. Они так долго трудятся над анализом событий, в которых участвует единственный фотон, что начинают считать, будто стрелка как-то связана с самим фотоном. Но эти стрелки представляют собой амплитуды вероятности, дающие при возведении их в квадрат вероятность всего события целиком[12].
В следующей лекции я начну упрощать и объяснять свойства вещества: покажу, откуда берется сжатие до 0,2, почему кажется, что свет проходит сквозь стекло или воду медленнее, чем сквозь воздух, и т. д. Ведь до сих пор я жульничал. На самом деле фотоны не отскакивают от поверхности стекла; они взаимодействуют с электронами внутри стекла. Я покажу вам, что фотоны в действительности только переходят от одного электрона к другому, и отражение и пропускание являются результатом того, что электрон захватывает фотон, потом, так сказать, «чешет в затылке» и испускает новый фотон. Это упрощение всего, о чем мы до сих пор говорили, очень приятно.
Лекция 3. Электроны и их взаимодействия
Это третья из четырех лекций, посвященных весьма трудному предмету – квантовой электродинамике. И так как сегодня слушателей явно больше, чем было раньше, то, значит, многие из вас не слышали первых двух лекций. Им эта лекция покажется почти полностью непонятной. Те же, кто слышал первые две лекции, также сочтут эту лекцию непонятной, но они знают, что так и должно быть: я уже объяснял на первой лекции, что мы вынуждены описывать поведение Природы, как правило, непонятным образом.