Это все, что касается основных действий, – если не считать небольших усложнений, связанных с поляризацией, которую мы по-прежнему не рассматриваем. Наша следующая задача: связать между собой эти три действия, чтобы рассматривать несколько более сложные явления.
В качестве первого примера давайте вычислим вероятность того, что два электрона попадут из пространственно-временных точек 1 и 2 в точки 3 и 4 (см. рис. 59). Такое событие может произойти несколькими способами. Первый способ состоит в том, что электрон из точки 1 летит в точку 3 (надо подставить 1 и 3 в формулу Е(А – В), я запишу это в виде Е(1–3), а электрон из точки 2 летит в точку 4. Поскольку это два независимых подпроцесса, надо умножить одну стрелку на другую, чтобы получить стрелку для этого первого способа, которым могло произойти событие. Поэтому мы пишем такую формулу для стрелки «первого способа»: Е(1–3)×Е(2–4).
Другой способ, которым может произойти данное событие: электрон из точки 1 летит в точку 4, а электрон из точки 2 – в точку 3. Это опять два независимых подпроцесса. Стрелка «второго способа» равна Е(1–4)×Е(2–3), и мы складываем ее со стрелкой «первого способа»[19]. Это хорошее приближение для амплитуды данного события.
Чтобы провести более точный расчет, который бы лучше согласовывался с результатами эксперимента, мы должны рассмотреть другие способы, которыми может произойти данное событие. Например, в каждом из двух основных способов один электрон мог отправиться в какое-то новое и чудесное место и испустить фотон (см. рис. 60). Тем временем другой электрон мог попасть в какое-то другое место и поглотить там этот фотон. Вычисление амплитуды первого из этих новых способов заключается в умножении следующих амплитуд: электрон летит из точки 1 в новое и чудесное место 5(где он излучает фотон), затем летит из 5 в 3; другой электрон летит из точки 2 в другое место 6 (где он поглощает фотон), затем летит из 6 в 4. Мы не должны также забывать про амплитуду попадания фотона из 5 и 6. Я напишу амплитуду такого способа осуществления события в первоклассном математическом виде, а вы можете следить: E(1–5)×j×E(5–3)×E(2–6)×j×E(6–4)×P(5–6) – множество сжатий и поворотов. (Предоставляю вам самим написать формулу для другого случая, когда электрон из точки 1 попадает в точку 4, а электрон из точки 2 попадет в точку 3.)[20]
Рис. 60. Вот два других способа, которыми может произойти событие на рис. 59: на каждом рисунке в точке 5 испускается, а в точке 6 поглощается фотон. Конечные условия здесь такие же, как и в двух предыдущих случаях – два электрона входят и два выходят – так что результаты неотличимы. Поэтому стрелки для этих «других способов» надо прибавить к стрелкам для всех способов на рис. 59, тогда получится еще лучшее приближение для результирующей стрелки всего события.