Биохакинг мозга (Эспри)
1
Амен, Дэниель. Измените свой мозг — изменится и жизнь! М.: Эксмо, 2009. Прим. ред.
2
В оригинале авторское название программы — Head Strong. Прим. ред.
3
Пуленепробиваемый (англ.). Прим. ред.
4
В книге изложены взгляды и идеи автора. Ее цель — дать полезную информацию общего характера о предмете, которому она посвящена. Она ни в коей мере не заменяет рекомендации медиков, основанные на конкретных заболеваниях, симптомах и проблемах. Если читатель нуждается в советах медицинского характера, касающихся здоровья, диеты, физических нагрузок и т. п., ему необходимо проконсультироваться с компетентным врачом. Автор и издатель не несут ответственности за любой вред здоровью или материальный ущерб, причиненный читателю как прямое или косвенное следствие выполнения указаний или рекомендаций или участия в программе, описанной в книге. Прим. ред.
5
«40 лет Созерцания». Прим. ред.
6
Вымышленное кристаллическое радиоактивное вещество из популярных комиксов о Супермене. Наиболее часто показывается в комиксах и кино в зеленой форме, которая лишает героя сил и может убить его. Прим. ред.
7
Fei Du et al., “Tightly Coupled Brain Activity and Cerebral ATP Metabolic Rate,” Proceedings of the National Academy of Sciences 105, no. 17 (April 29, 2008): 6409–6414, DOI: 10.1073/pnas.0710766105.
8
Александр Джозеф (Лекс) Лютор — вымышленный персонаж, суперзлодей, заклятый враг Супермена. Прим. ред.
9
Kathleen D. Vohs et al., “Running Head: Self-Regulation and Choice” (неопубликованный доклад на конференции, Chicago Booth Marketing Workshop, Chicago, Illinois, 2005), https://www.chicagobooth.edu/research/workshops/marketing/archive/WorkshopPapers/vohs.pdf.
10
Carolyn M. Matthews, “Nurturing Your Divine Feminine,” Proceedings (Baylor University Medical Center) 24, no. 3 (2011): 248.
11
«Почему я приглядываю за своей митохондрией». Terry Wahls. Tz Press, 2010.
12
Prakash Seppan et al., “Inflence of Testosterone Deprivation on Oxidative Stress Induced Neuronal Damage in Hippocampus of Adult Rats,” (Conference poster, 39th American Society of Andrology Annual Meeting, April 6, 2014) Andrology, 2 (Suppl. 1) (April 2014): 62, DOI: 10.1111/j.2047–2927.2014.00221.x.
13
Martyn A. Sharpe, Taylor L. Gist, and David S. Baskin, “Alterations in Sensitivity to Estrogen, Dihydrotestosterone, and Xenogens in B-Lymphocytes from Children with Autism Spectrum Disorder and Their Unaffected Twins/Siblings,” Journal of Toxicology 2013 (2013).
14
Kathleen A. Mattingly et al., “Estradiol Stimulates Transcription of Nuclear Respiratory Factor-1 and Increases Mitochondrial Biogenesis,” Molecular Endocrinology 22, no. 3 (March 2008): 609–622, DOI: 10.1210/me.2007–0029.
15
Yuko Hara et al., “Presynaptic Mitochondrial Morphology in Monkey Prefrontal Cortex Correlates with Working Memory and Is Improved with Estrogen Treatment,” Proceedings of the National Academy of Sciences of the United States of America 111, no. 1 (January 7, 2014): 486–491, DOI: 10.1073/pnas.1311310110.
16
Federica Cioff et al., “Thyroid Hormones and Mitochondria: With a Brief Look at Derivatives and Analogues,” Mitochondrial Endocrinology — Mitochondria as Key to Hormones and Metabolism 379, no. 1–2 (October 15, 2013): 51–61, DOI: 10.1016/j.mce.2013.06.006.
17
Anna Gvozdjáková, Mitochondrial Medicine: Mitochondrial Metabolism, Diseases, Diagnosis and Therapy (Springer Science & Business Media, 2008).
18
Zu-Hang Sheng, “Mitochondrial Trafficking and Anchoring in Neurons: New Insight and Implications,” Journal of Cell Biology 204, no. 7 (March 31, 2014): 1087, DOI: 10.1083/jcb.201312123.
19
Xiao-Hong Zhu et al., “Quantitative Imaging of Energy Expenditure in Human Brain,” Neuroimage 60, no. 4 (2012): 2107–2117.
20
R. Steven Stowers et al., “Axonal Transport of Mitochondria to Synapses Depends on Milton, a Novel Drosophila Protein,” Neuron 36, no. 6 (2002): 1063–1077, DOI: 10.1016/S0896-6273(02)01094-2.; Xiufang Guo et al., “The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses,” Neuron 47, no. 3 (2005): 379–393; Huan Ma et al., “KIF5B Motor Adaptor Syntabulin Maintains Synaptic Transmission in Sympathetic Neurons,” Journal of Neuroscience 29, no. 41 (2009): 13019–13029.
21
David G. Nicholls and Samantha L. Budd, “Mitochon L. I. Garay et al., “Progesterone Down-Regulates Spinal Cord Inflammatory Mediators and Increases Myelination in Experimental Autoimmune Encephalomyelitis,” Neuroscience 226 (December 13, 2012): 40–50, DOI: 10.1016/j.neuroscience.2012.09.032.
22
Zu-Hang Sheng, “Mitochondrial Trafficking and Anchoring in Neurons: New Insight and Implications,” Journal of Cell Biology 204, no. 7 (March 31, 2014): 1087, DOI: 10.1083/jcb.201312123.; Robert L. Morris and Peter J. Hollenbeck, “The Regulation of Bidirectional Mitochondrial Transport Is Coordinated with Axonal Outgrowth,” Journal of Cell Science 104, no. 3 (1993): 917–927; Gordon Ruthel and Peter J. Hollenbeck, “Response of Mitochondrial Traffic to Axon Determination and Differential Branch Growth,” Journal of Neuroscience 23, no. 24 (2003): 8618–8624.
23
Jian-Sheng Kang et al., “Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation,” Cell 132, no. 1 (2008): 137–148.
24
Zu-Hang Sheng and Qian Cai, “Mitochondrial Transport in Neurons: Impact on Synaptic Homeostasis and Neurodegeneration,” Nature Reviews Neuroscience 13, no. 2 (2012): 77–93.
25
Sébastien Tremblay et al., “Attentional Filtering of Visual Information by Neuronal Ensembles in the Primate Lateral Prefrontal Cortex,” Neuron 85, no. 1 (2015): 202–215, DOI: 10.1016/j.neuron.2014.11.021.
26
A. Lajtha et al., “Turnover of Myelin Proteins in Mouse Brain in Vivo,” Biochemical Journal 164, no. 2 (May 15, 1977): 323–329.
27
Sidney A. Jones et al., “Triiodothyronine Is a Survival Factor for Developing Oligodendrocytes,” Molecular and Cellular Endocrinology 199, no. 1–2 (January 31, 2003): 49–60. DOI: 10.1016/S0303-7207(02)00296-4.
28
L. I. Garay et al., “Progesterone Down-Regulates Spinal Cord Inflammatory Mediators and Increases Myelination in Experimental Autoimmune Encephalomyelitis,” Neuroscience 226 (December 13, 2012): 40–50, DOI: 10.1016/j.neuroscience.2012.09.032.
29
J. M. Dietschy and S. D. Turley, “Cholesterol Metabolism in the Brain,” Current Opinion in Lipidology 12, no. 2 (April 2001): 105–112.
30
Stephanie Seneff, Glyn Wainwright, and Luca Mascitelli, “Nutrition and Alzheimer’s Disease: The Detrimental Role of a High Carbohydrate Diet,” European Journal of Internal Medicine 22, no. 2 (n.d.): 134–140, DOI: 10.1016/j.ejim.2010.12.017.
31
Amy Paturel, “Good Fats — Boost Brain Power with Good Fats,” Cleveland Clinic Wellness, September 8, 2009, http://www.clevelandclinicwellness.com/food/GoodFats/Pages/BoostBrainPowerwithGoodFats.aspx.
32
In Young Choi et al., “A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms,” Cell Reports 15, no. 10 (June 7, 2016): 2136–2146, DOI: 10.1016/j.celrep.2016.05.009.
33
A. E. Hoban et al., “Regulation of Prefrontal Cortex Myelination by the Microbiota,” Translational Psychiatry 6 (April 5, 2016): e774, DOI: 10.1038/tp.2016.42.
34
Совокупность всех микроорганизмов, их генов и геномов в кишечнике. Прим. ред.
35
“The Life and Death of a Neuron,” National Institute of Neurological Disorders and Stroke, July 1, 2015, www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Life-and-Death-Neuron.
36
R. Molteni et al., “A High-Fat, Refined Sugar Diet Reduces Hippocampal Brain-Derived Neurotrophic Factor, Neuronal Plasticity, and Learning,” Neuroscience 112, no. 4 (2002): 803–814.
37
Barbara S. Beltz et al., “Omega-3 Fatty Acids Upregulate Adult Neurogenesis,” Neuroscience Letters 415, no. 2 (March 26, 2007): 154–58, DOI: 10.1016/j.neulet.2007.01.010.
38
Yanyan Wang et al., “Green Tea Epigallocatechin-3-Gallate (EGCG) Promotes Neural Progenitor Cell Proliferation and Sonic Hedgehog Pathway Activation during Adult Hippocampal Neurogenesis,” Molecular Nutrition and Food Research 56, no. 8 (August 2012): 1292–1303, DOI: 10.1002/mnfr.201200035.
39
Christian Mirescu and Elizabeth Gould, “Stress and Adult Neurogenesis,” Hippocampus 16, no. 3 (2006): 233–238, DOI: 10.1002/hipo.20155.
40
Jennifer L. Warner-Schmidt and Ronald S. Duman, “Hippocampal Neurogenesis: Opposing Effects of Stress and Antidepressant Treatment,” Hippocampus 16, no. 3 (2006): 239–249, DOI: 10.1002/hipo.20156.
41
“Neurogenesis in Adult Brain: Association with Stress and Depression,” Science Daily, September 2, 2008, https://www.sciencedaily.com/releases/2008/08/080831114717.htm.
42
Miriam S. Nokia et al., “Physical Exercise Increases Adult Hippocampal Neurogenesis in Male Rats Provided It Is Aerobic and Sustained,” Journal of Physiology 594, no. 7 (April 1, 2016): 1855–1873, DOI: 10.1113/JP271552.
43
M. S. Kaplan, “Environment Complexity Stimulates Visual Cortex Neurogenesis: Death of a Dogma and a Research Career,” Trends in Neurosciences 24, no. 10 (October 2001): 617–620.
44
Benedetta Leuner, Erica R. Glasper, and Elizabeth Gould, “Sexual Experience Promotes Adult Neurogenesis in the Hippocampus Despite an Initial Elevation in Stress Hormones,” PLOS ONE 5, no. 7 (July 14, 2010): e11597, DOI: 10.1371/journal.pone.0011597.
45
Bharat B. Aggarwal et al., “Inflammation and Cancer: How Hot Is the Link?” Biochemical Pharmacology 72, no. 11 (November 30, 2006): 1605–1621, DOI: 10.1016/j.bcp.2006.06.029.
46
Dario Giugliano, Antonio Ceriello, and Katherine Esposito, “The Effects of Diet on Inflammation: Emphasis on the Metabolic Syndrome,” Journal of the American College of Cardiology 48, no. 4 (August 15, 2006): 677–685, DOI: 10.1016/j.jacc.2006.03.052.
47
Pritam Das, “Overview — Alzheimer’s Disease and Inflammation Lab: Pritam Das — Mayo Clinic Research,” Mayo Clinic, accessed October 20, 2016, http://www.mayo.edu/research/labs/alzheimers-disease-inflammation/overview.
48
Arthur A. Simen et al., “Cognitive Dysfunction with Aging and the Role of Inflammation,” Therapeutic Advances in Chronic Disease 2, no. 3 (May 2011): 175–195, DOI: 10.1177/2040622311399145.
49
Robin C. Hilsabeck et al., “Cognitive Efficiency Is Associated with Endogenous Cytokine Levels in Patients with Chronic Hepatitis C,” Journal of Neuroimmunology 221, no. 1–2 (April 2010): 53–61, DOI: 10.1016/j.jneuroim.2010.01.017 Tessa N. van den Kommer et al., “The Role of Lipoproteins and Inflammation in Cognitive Decline: Do They Interact?” Neurobiology of Aging 33, no. 1 (January 2012): 196.e1–196.e12, DOI: 10.1016/j.neurobiolaging.2010.05.024 Shino Magaki et al., “Increased Production of Inflammatory Cytokines in Mild Cognitive Impairment,” Experimental Gerontology 42, no. 3 (March 2007): 233–240, DOI: 10.1016/j.exger.2006.09.015.; M. G. Dik et al., “Serum Inflammatory Proteins and Cognitive Decline in Older Persons,” Neurology 64, no. 8 (April 26, 2005): 1371–1377, DOI: 10.1212/01.WNL.0000158281.08946.68.
50
J. P. Godbout et al., “Exaggerated Neuroinflammation and Sickness Behavior in Aged Mice Following Activation of the Peripheral Innate Immune System,” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 19, no. 10 (August 2005): 1329–1331, DOI: 10.1096/fj.05-3776fje Tomas A. Prolla, “DNA Microarray Analysis of the Aging Brain,” Chemical Senses 27, no. 3 (March 2002): 299–306.
51
Ryan N. Dilger and Rodney W. Johnson, “Aging, Microglial Cell Priming, and the Discordant Central Inflammatory Response to Signals from the Peripheral Immune System,” Journal of Leukocyte Biology 84, no. 4 (October 2008): 932–939, DOI: 10.1189/jlb.0208108 H. A. Rosczyk, N. L. Sparkman, and R. W. Johnson, “Neuroinflammation and Cognitive Function in Aged Mice Following Minor Surgery,” Experimental Gerontology 43, no. 9 (September 2008): 840–846, DOI: 10.1016/j.exger.2008.06.004; Godbout et al., “Exaggerated Neuroinflammation and Sickness Behavior in Aged Mice Following Activation of the Peripheral Innate Immune System,” 1329–1331; Aine Kelly et al., “Activation of p38 Plays a Pivotal Role in the Inhibitory Effect of Lipopolysaccharide and Interleukin-1 Beta on Long-Term Potentiation in Rat Dentate Gyrus,” Journal of Biological Chemistry 278, no. 21 (May 23, 2003): 19453–19462, DOI: 10.1074/jbc.M301938200.
52
Arthur A. Simen et al., “Cognitive Dysfunction with Aging and the Role of Inflammation,” Therapeutic Advances in Chronic Disease 2, no. 3 (May 2011): 175–95, DOI: 10.1177/2040622311399145.
53
Arthur A. Simen et al., “Cognitive Dysfunction with Aging and the Role of Inflammation,” Therapeutic Advances in Chronic Disease 2, no. 3 (May 2011): 175–95, DOI: 10.1177/2040622311399145.
54
L. Å. Hanson, “Immune Effects of the Normal Gut Flora,” Monatsschrift Kinderheilkunde 146, no. 1 (n.d.): S2–6, DOI: 10.1007/PL00014761.
55
Перлмуттер, Дэвид. Еда и мозг. Что углеводы делают со здоровьем, мышлением и памятью. М.: Манн, Иванов и Фербер, 2014. Прим. ред.
56
Перлмуттер, Дэвид, Колман, Кэрол. Здоровый мозг. Программа для улучшения памяти и мышления. М.: Манн, Иванов и Фербер, 2017. Прим. ред.
57
Roberto Berni Canani et al., “Potential Benefiсial Effects of Butyrate in Intestinal and Extraintestinal Diseases,” World Journal of Gastroenterology 17, no. 12 (March 28, 2011): 1519–1528, DOI: 10.3748/wjg.v17.i12.1519.
58
Matam Vijay-Kumar et al., “Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5,” Science 328, no. 5975 (April 9, 2010): 228–231, DOI: 10.1126/science.1179721.
59
Ruth E. Ley et al., “Microbial Ecology: Human Gut Microbes Associated with Obesity,” Nature 444, no. 7122 (December 21, 2006): 1022–1023, DOI: 10.1038/4441022a.
60
Jean-Pascal De Bandt, Anne-Judith Waligora-Dupriet, and Marie-José Butel, “Intestinal Microbiota in Inflammation and Insulin Resistance: Relevance to Humans,” Current Opinion in Clinical Nutrition and Metabolic Care 14, no. 4 (July 2011): 334–340, DOI: 10.1097/MCO.0b013e328347924a.
61
Sergio Davinelli et al., “Enhancement of Mitochondrial Biogenesis with Polyphenols: Combined Effects of Resveratrol and Equol in Human Endothelial Cells,” Immunity and Ageing 10 (2013): 28, DOI: 10.1186/1742-4933-10-28.
62
Cristian Sandoval-Acuña, Jorge Ferreira, and Hernán Speisky, “Polyphenols and Mitochondria: An Update on Their Increasingly Emerging ROS-Scavenging Independent Actions,” Archives of Biochemistry and Biophysics 559 (October 1, 2014): 75–90, DOI: 10.1016/j.abb.2014.05.017.
63
Antoine Louveau et al., “Structural and Functional Features of Central Nervous System Lymphatic Vessels,” Nature 523, no. 7560 (July 16, 2015): 337–341, DOI: 10.1038/nature14432.
64
Carlo Pergola et al., “Testosterone Suppresses Phospholipase D, Causing Sex Differences in Leukotriene Biosynthesis in Human Monocytes,” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 25, no. 10 (October 2011): 3377–3387, DOI: 10.1096/fj.11-182758.
65
Rainer H. Straub, “The Complex Role of Estrogens in Inflammation,” Endocrine Reviews 28, no. 5 (December 1, 2006): 521–574, DOI: 10.1210/er.2007–0001.
66
Anthony J. Harmar et al., “Pharmacology and Functions of Receptors for Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-Activating Polypeptide: IUPHAR Review 1,” British Journal of Pharmacology 166, no.1 (May 2012): 4–17, DOI: 10.1111/j.1476–5381.2012.01871.x.
67
Amali E. Samarasinghe, Scott A. Hoselton, and Jane M. Schuh, “SpatioTemporal Localization of Vasoactive Intestinal Peptide and Neutral Endopeptidase in Allergic Murine Lungs,” Regulatory Peptides 164, no. 2–3 (September 24, 2010): 151–157, DOI: 10.1016/j.regpep.2010.05.017.
68
Bronwen Martin et al., “Vasoactive Intestinal Peptide-Null Mice Demonstrate Enhanced Sweet Taste Preference, Dysglycemia, and Reduced Taste Bud Leptin Receptor Expression,” Diabetes 59, no. 5 (May 2010): 1143–1152, DOI: 10.2337/db09-0807.
69
Mathieu Laplante and David M. Sabatini, “mTOR Signaling in Growth Control and Disease,” Cell 149, no. 2 (April 13, 2012): 274–293, DOI: 10.1016/j.cell.2012.03.017.
70
Jacqueline Blundell, Mehreen Kouser, and Craig M. Powell, “Systemic Inhibition of Mammalian Target of Rapamycin Inhibits Fear Memory Reconsolidation,” Neurobiology of Learning and Memory 90, no. 1 (July 2008): 28–35, DOI: 10.1016/j.nlm.2007.12.004.
71
Cinzia Dello Russo et al., “Involvement of mTOR Kinase in Cytokine Dependent Microglial Activation and Cell Proliferation,” Biochemical Pharmacology 78, no. 9 (November 1, 2009): 1242–1251, DOI: 10.1016/j.bcp.2009.06.097.
72
United States Department of Agriculture, “Profiing Food Consumption in America,” in Agriculture Fact Book, 2001–2002 (Washington, DC: United States Department of Agriculture, Office of Communications, 2003).
73
Аббревиатуру AGE можно прочитать как age — «возраст» в переводе с английского языка. Прим. пер.
74
Alan R. Gaby, “Adverse Effects of Dietary Fructose,” Alternative Medicine Review: A Journal of Clinical Therapeutic 10, no. 4 (December 2005): 294–306.
75
Sarah Myhill, Norman E. Booth, and John McLaren-Howard, “Targeting Mitochondrial Dysfunction in the Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) — a Clinical Audit,” International Journal of Clinical and Experimental Medicine 6, no. 1 (2013): 1–15.
76
Douglas C. Wallace, “A Mitochondrial Bioenergetic Etiology of Disease,” Journal of Clinical Investigation 123, no. 4 (April 2013): 1405–1412, DOI: 10.1172/JCI61398.
77
G. Chevalier et al., “Earthing: Health Implications of Reconnecting the Human Body to the Earth’s Surface Electrons,” Journal of Environmental and Public Health, 2012 (2012): 291541, DOI: 10.1155/2012/291541.
78
Lilach Gavish et al., “Low-Level Laser Irradiation Stimulates Mitochondrial Membrane Potential and Disperses Subnuclear Promyelocytic Leukemia Protein,” Lasers in Surgery and Medicine 35, no. 5 (2004): 369–376, DOI: 10.1002/lsm.20108.
79
Cleber Ferraresi, Michael R. Hamblin, and Nivaldo A. Parizotto, “Low-Level Laser (Light) Therapy (LLLT) on Muscle Tissue: Performance, Fatigue and Repair Benefits by the Power of Light,” Photonics and Lasers in Medicine 1, no. 4 (November 1, 2012): 267–286, DOI: 10.1515/plm-2012-0032.
80
Stefano Vendrame et al., “Six-Week Consumption of a Wild Blueberry Powder Drink Increases Bifidobacteria in the Human Gut,” Journal of Agricultural and Food Chemistry 59, no. 24 (December 28, 2011): 12815–12820, DOI: 10.1021/jf2028686.
81
R. Puupponen-Pimiä et al., “Berry Phenolics Selectively Inhibit the Growth of Intestinal Pathogens,” Journal of Applied Microbiology 98, no. 4 (April 1, 2005): 991–1000, DOI: 10.1111/j.1365–2672.2005.02547.x.
82
Theresa E. Cowan et al., “Chronic Coffee Consumption in the Diet-Induced Obese Rat: Impact on Gut Microbiota and Serum Metabolomics,” Journal of Nutritional Biochemistry 25, no. 4 (April 2014): 489–495, DOI: 10.1016/j.jnutbio.2013.12.009.
83
Valentina Carito et al., “Effects of Olive Leaf Polyphenols on Male Mouse Brain NGF, BDNF and Their Receptors TrkA, TrkB and p75,” Natural Product Research 28, no. 22 (2014): 1970–1984, DOI: 10.1080/14786419.2014.918977.
84
Kiyofumi Yamada and Toshitaka Nabeshima, “Brain-Derived Neurotrophic Factor/TrkB Signaling in Memory Processes,” Journal of Pharmacological Sciences 91, no. 4 (2003): 267–270, DOI: 10.1254/jphs.91.267.
85
Jeremy P. E. Spencer, “Interactions of Flavonoids and Their Metabolites with Cell Signaling Cascades,” in Nutrigenomics, ed. Gerald Rimbach, Jürgen Fuchs, and Lester Packer (CRC Press, 2005), 353–378, http://www.crcnetbase.com/doi/abs/10.1201/9781420028096.ch17.
86
Jeremy P. E. Spencer, “Interactions of Flavonoids and Their Metabolites with Cell Signaling Cascades,” in Nutrigenomics, ed. Gerald Rimbach, Jürgen Fuchs, and Lester Packer (CRC Press, 2005), 353–378, http://www.crcnetbase.com/doi/abs/10.1201/9781420028096.ch17.
87
Massimo D’Archivio et al., “Bioavailability of the Polyphenols: Status and Controversies,” International Journal of Molecular Sciences 11, no. 4 (March 31, 2010): 1321–1342, DOI: 10.3390/ijms11041321.
88
Jane V. Higdon and Balz Frei, “Coffee and Health: A Review of Recent Human Research,” Critical Reviews in Food Science and Nutrition 46, no. 2 (2006): 101–123, DOI: 10.1080/10408390500400009.
89
Kenneth J. Mukamal et al., “Coffee Consumption and Mortality after Acute Myocardial Infarction: The Stockholm Heart Epidemiology Program,” American Heart Journal 157, no. 3 (March 2009): 495–501, DOI: 10.1016/j.ahj.2008.11.009.
90
Harumi Uto-Kondo et al., “Coffee Consumption Enhances High-Density Lipoprotein-Mediated Cholesterol Efflux in Macrophages,” Circulation Research 106, no. 4 (March 5, 2010): 779–787, DOI: 10.1161/CIRCRESAHA.109.206615.
91
Yi-Fang Chu et al., “Roasted Coffees High in Lipophilic Antioxidants and Chlorogenic Acid Lactones Are More Neuroprotective Than Green Coffees,” Journal of Agricultural and Food Chemistry 57, no. 20 (October 28, 2009): 9801–9808, DOI: 10.1021/jf902095z.
92
Esther Lopez-Garcia et al., “The Relationship of Coffee Consumption with Mortality,” Annals of Internal Medicine 148, no. 12 (June 17, 2008): 904–914.
93
Esther Lopez-Garcia et al., “Coffee Consumption and Risk of Stroke in Women,” Circulation 119, no. 8 (March 3, 2009): 1116–1123, DOI: 10.1161/CIRCULATIONAHA.108.826164.
94
W. L. Zhang et al., “Coffee Consumption and Risk of Cardiovascular Events and All-Cause Mortality among Women with Type 2 Diabetes,” Diabetologia 52, no. 5 (May 2009): 810–817, DOI: 10.1007/s00125-009-1311-1.
95
D. D. Mellor et al., “High-Cocoa Polyphenol-Rich Chocolate Improves HDL Cholesterol in Type 2 Diabetes Patients,” Diabetic Medicine: A Journal of the British Diabetic Association 27, no. 11 (November 2010): 1318–1321.
96
M. Sánchez-Hervás et al., “Mycobiota and Mycotoxin Producing Fungi from Cocoa Beans,” International Journal of Food Microbiology 125, no. 3 (July 31, 2008): 336–340, DOI: 10.1016/j.ijfoodmicro.2008.04.021.
97
Mark A. Wilson et al., “Blueberry Polyphenols Increase Lifespan and Thermotolerance in Caenorhabditis Elegans,” Aging Cell 5, no. 1 (February 2006): 59–68, DOI: 10.1111/j.1474–9726.2006.00192.x.
98
Ana Rodriguez-Mateos et al., “Intake and Time Dependence of Blueberry Flavonoid-Induced Improvements in Vascular Function: A Randomized, Controlled, Double-Blind, Crossover Intervention Study with Mechanistic Insights into Biological Activity,” American Journal of Clinical Nutrition 98, no. 5 (November 2013): 1179–1191, DOI: 10.3945/ajcn.113.066639.
99
Navindra P. Seeram, Rupo Lee, and David Heber, “Bioavailability of Ellagic Acid in Human Plasma After Consumption of Ellagitannins from Pomegranate (Punica Granatum L.) Juice,” Clinica Chimica Acta; International Journal of Clinical Chemistry 348, no. 1–2 (October 2004): 63–68, DOI: 10.1016/j.cccn.2004.04.029.
100
Olga Vitseva et al., “Grape Seed and Skin Extracts Inhibit Platelet Function and Release of Reactive Oxygen Intermediates,” Journal of Cardiovascular Pharmacology 46, no. 4 (October 2005): 445–451.
101
Debasis Bagchi et al., “Molecular Mechanisms of Cardioprotection by a Novel Grape Seed Proanthocyanidin Extract,” Mutation Research 523–524 (March 2003): 87–97.
102
David Pajuelo et al., “Chronic Dietary Supplementation of Proanthocyanidins Corrects the Mitochondrial Dysfunction of Brown Adipose Tissue Caused by Diet-Induced Obesity in Wistar Rats,” British Journal of Nutrition 107, no. 2 (January 2012): 170–178, DOI: 10.1017/S0007114511002728.
103
Junli Zhen et al., “Effects of Grape Seed Proanthocyanidin Extract on Pentylenetetrazole-Induced Kindling and Associated Cognitive Impairment in Rats,” International Journal of Molecular Medicine 34, no. 2 (August 2014): 391–398, DOI: 10.3892/ijmm.2014.1796.
104
Valerie Desquiret-Dumas et al., “Resveratrol Induces a Mitochondrial Complex I Dependent Increase in NADH Oxidation Responsible for Sirtuin Activation in Liver Cells,” Journal of Biological Chemistry (October 31, 2013), DOI: 10.1074/jbc.M113.466490.
105
Marie Lagouge et al., “Resveratrol Improves Mitochondrial Function and Protects Against Metabolic Disease by Activating SIRT1 and PGC-1 alpha,” Cell 127, no. 6 (December 15, 2006): 1109–1122, DOI: 10.1016/j.cell.2006.11.013.
106
Richard D. Semba, Luigi Ferrucci, and Benedetta Bartali, “Resveratrol Levels and All-Cause Mortality in Older Community-Dwelling Adults,” JAMA Internal Medicine 174, no. 7 (July 1, 2014): 1077–1084, DOI: 10.1001/jamainternmed.2014.1582.
107
Tamara Shiner et al., “Dopamine and Performance in a Reinforcement Learning Task: Evidence from Parkinson’s Disease,” Brain: A Journal of Neurology 135, Pt 6 (June 2012): 1871–1883, DOI: 10.1093/brain/aws083.
108
Paul T. Francis et al., “The Cholinergic Hypothesis of Alzheimer’s Disease: A Review of Progress,” Journal of Neurology, Neurosurgery and Psychiatry 66, no. 2 (February 1, 1999): 137–147, DOI: 10.1136/jnnp.66.2.137.
109
Richard H. Hall, “Neurotransmitters and Sleep” (Lesson outline, Missouri University of Science and Technology, 1998), http://web.mst.edu/~rhall/neuroscience/03_sleep/sleepneuro.pdf.
110
DL-фенилаланин (DLPA) — одна из незаменимых аминокислот, которая также служит в качестве строительного элемента для различных видов белков, которые производит организм человека. Прим. ред.
111
Cecilia Vitali, Cheryl L. Wellington, and Laura Calabresi, “HDL and Cholesterol Handling in the Brain,” Cardiovascular Research 103, no. 3 (August 1, 2014): 405–413, DOI: 10.1093/cvr/cvu148.
112
Meharban Singh, “Essential Fatty Acids, DHA and Human Brain,” Indian Journal of Pediatrics 72, no. 3 (March 2005): 239–242.
113
M. A. Crawford et al., “Evidence for the Unique Function of Docosahexaenoic Acid during the Evolution of the Modern Hominid Brain,” Lipids 34, no. 1 (1999): S39–S47, DOI: 10.1007/BF02562227.
114
Karin Yurko-Mauro et al., “Beneficial Effects of Docosahexaenoic Acid on Cognition in Age-Related Cognitive Decline,” Alzheimer’s and Dementia: The Journal of the Alzheimer’s Association 6, no. 6 (November 2010): 456–464, DOI: 10.1016/j.jalz.2010.01.013.
115
Dany Arsenault et al., “DHA Improves Cognition and Prevents Dysfunction of Entorhinal Cortex Neurons in 3xTg-AD Mice,” PLOS ONE 6, no. 2 (February 23, 2011): e17397, DOI: 10.1371/journal.pone.0017397.
116
Eric N. Ponnampalam, Neil J. Mann, and Andrew J. Sinclair, “Effect of Feeding Systems on Omega-3 Fatty Acids, Conjugated Linoleic Acid and Trans Fatty Acids in Australian Beef Cuts: Potential Impact on Human Health,” Asia Pacific Journal of Clinical Nutrition 15, no. 1 (2006): 21–29.
117
J. M. Leheska et al., “Effects of Conventional and Grass-Feeding Systems on the Nutrient Composition of Beef,” Journal of Animal Science 86, no. 12 (December 2008): 3575–3585, DOI: 10.2527/jas.2007–0565.
118
Gabriela Segura, “Ketogenic Diet — a Connection between Mitochondria and Diet,” DoctorMyhill, November 20, 2015, http://www.drmyhill.co.uk/wiki/Ketogenic_diet_-_a_connection_between_mitochondria_and_diet.
119
Anssi H. Manninen, “Metabolic Effects of the Very-Low-Carbohydrate Diets: Misunderstood ‘Villains’ of Human Metabolism,” Journal of the International Society of Sports Nutrition 1, no. 2 (December 31, 2004): 7–11, DOI: 10.1186/1550-2783-1-2-7.
120
R. Pasquali et al., “Effect of Dietary Carbohydrates during Hypocaloric Treatment of Obesity on Peripheral Thyroid Hormone Metabolism,” Journal of Endocrinological Investigation 5, no. 1 (February 1982): 47–52, DOI: 10.1007/BF03350482.
121
Vigen K. Babayan, “Medium Chain Length Fatty Acid Esters and Their Medical and Nutritional Applications,” Journal of the American Oil Chemists’ Society 58, no. 1 (n.d.): 49A–51A, DOI: 10.1007/BF02666072.
122
A. A. Gibson et al., “Do Ketogenic Diets Really Suppress Appetite? A Systematic Review and Meta-Analysis,” Obesity Reviews: An Official Journal of the International Association for the Study of Obesity 16, no. 1 (January 2015): 64–76, DOI: 10.1111/obr.12230.
123
Mark P. Mattson, Wenzhen Duan, and Zhihong Guo, “Meal Size and Frequency Affect Neuronal Plasticity and Vulnerability to Disease: Cellular and Molecular Mechanisms,” Journal of Neurochemistry 84, no. 3 (February 2003): 417–431.
124
Elvira Larqué et al., “Dietary Trans Fatty Acids Alter the Compositions of Microsomes and Mitochondria and the Activities of Microsome Delta6-Fatty Acid Desaturase and Glucose-6-Phosphatase in Livers of Pregnant Rats,” Journal of Nutrition 133, no. 8 (August 2003): 2526–2531.
125
Wenfeng Yu et al., “Leaky β-Oxidation of a Trans-Fatty Acid: Incomplete β-Oxidation of Elaidic Acid Is Due to the Accumulation of 5-Trans-Tetradecenoyl-Coa and Its Hydrolysis and Conversion to 5-Transtetradecenoylcarnitine in the Matrix of Rat Mitochondria,” Journal of Biological Chemistry 279, no. 50 (December 10, 2004): 52160–52167, DOI: 10.1074/jbc.M409640200.
126
Dariush Mozaffarian et al., “Dietary Intake of Trans Fatty Acids and Systemic Inflammation in Women,” American Journal of Clinical Nutrition 79, no. 4 (April 2004): 606–612.
127
Giselle S. Duarte and Adriana Farah, “Effect of Simultaneous Consumption of Milk and Coffee on Chlorogenic Acids’ Bioavailability in Humans,” Journal of Agricultural and Food Chemistry 59, no. 14 (July 27, 2011): 7925–7931, DOI: 10.1021/jf201906p.
128
Разновидность очищенного топленого масла. Масло ги отличается от других животных и растительных жиров наличием жирных кислот с короткой химической цепью. Поэтому ги под воздействием высоких температур не становится токсичным, гореть и дымиться оно начинает только после 250 °C. Прим. ред.
129
Zhanguo Gao et al., “Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice,” Diabetes 58, no. 7 (July 2009): 1509–1517, DOI: 10.2337/db08-1637.
130
Alessio Fasano, “Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer,” Physiological Reviews 91, no. 1 (January 2011): 151–175, DOI: 10.1152/physrev.00003.2008.
131
C. Sategna-Guidetti et al., “Autoimmune Thyroid Diseases and Coeliac Disease,” European Journal of Gastroenterology and Hepatology 10, no. 11 (November 1998): 927–931.
132
Karen L. Madsen et al., “FK506 Increases Permeability in Rat Intestine by Inhibiting Mitochondrial Function,” Gastroenterology 109, no. 1 (July 1, 1995): 107–114, DOI: 10.1016/0016-5085(95)90274-0.
133
Elizabeth A. Novak and Kevin P. Mollen, “Mitochondrial Dysfunction in Inflammatory Bowel Disease,” Frontiers in Cell and Developmental Biology 3 (2015): 62, DOI: 10.3389/fcell.2015.00062.
134
Chayma Bouaziz, Hassen Bacha, and Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia, “Mitochondrial Dysfunctions in Response to Mycotoxins: An Overview,” in Mitochondria: Structure, Functions and Dysfunctions, ed. Oliver L. Svensson (NOVA Science Publishers, 2011), 811–828, https://www.novapublishers.com/catalog/product_info.php?products_id=46019.
135
Chayma Bouaziz, Hassen Bacha, and Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia, “Mitochondrial Dysfunctions in Response to Mycotoxins: An Overview,” in Mitochondria: Structure, Functions and Dysfunctions, ed. Oliver L. Svensson (NOVA Science Publishers, 2011), 811–828, https://www.novapublishers.com/catalog/product_info.php?products_id=46019.
136
I. Studer-Rohr et al., “The Occurrence of Ochratoxin A in Coffee,” Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 33, no. 5 (May 1995): 341–355.
137
Y. H. Wei et al., “Effect of Ochratoxin A on Rat Liver Mitochondrial Respiration and Oxidative Phosphorylation,” Toxicology 36, no. 2–3 (August 1985): 119–130.
138
Herman Meisner, “Energy-Dependent Uptake of Ochratoxin A by Mitochondria,” Archives of Biochemistry and Biophysics 173, no. 1 (March 1976): 132–140, DOI: 10.1016/0003-9861(76)90243-5.
139
Yan-Der Hsuuw, Wen-Hsiung Chan, and Jau-Song Yu, “Ochratoxin A Inhibits Mouse Embryonic Development by Activating a Mitochondrion-Dependent Apoptotic Signaling Pathway,” International Journal of Molecular Sciences 14, no. 1 (January 7, 2013): 935–953, DOI: 10.3390/ijms14010935.
140
Joseph H. Brewer et al., “Detection of Mycotoxins in Patients with Chronic Fatigue Syndrome,” Toxins 5, no. 4 (April 11, 2013): 605–617, DOI: 10.3390/toxins5040605.
141
BIOMIN Holding GmbH, “Biomin Global Mycotoxin Survey 2015,” 2015, https://info.biomin.net/acton/fs/blocks/showLandingPage/a/14109/p/p-004e/t/page/fm/17.
142
Diane Benford et al., “Ochratoxin A,” International Programme on Chemical Safety, WHO Food Additives, Safety Evaluation of Certain Mycotoxins in Food, 74 (2001): 281–415.
143
H. M. Martins, M. M. Guerra, and F. Bernardo, “A Six-Year Survey (1999–2004) of the Ocurrence of Afltoxin M1 in Daily Products Produced in Portugal,” Mycotoxin Research 21, no. 3 (September 2005): 192–195, DOI: 10.1007/BF02959261.
144
M. L. Martins, H. M. Martins, and A. Gimeno, “Incidence of Microflora and of Ochratoxin A in Green Coffee Beans (Coffea Arabica),” Food Additives and Contaminants 20, no. 12 (December 2003): 1127–1131, DOI: 10.1080/02652030310001620405.
145
Studer-Rohr et al., “The Occurrence of Ochratoxin A in Coffee.”
146
Mariano B. M. Ferraz et al., “Kinetics of Ochratoxin A Destruction During Coffee Roasting,” Food Control 21, no. 6 (June 2010): 872–877, DOI: 10.1016/j.foodcont.2009.12.001.
147
При натуральном (его еще называют сухим) способе собранный кофе сушится в ягоде. Ягоды раскладывают на открытом воздухе ровным слоем в несколько сантиметров и периодически переворачивают. Прим. ред.
148
Rufio Mateo et al., “An Overview of Ochratoxin A in Beer and Wine,” International Journal of Food Microbiology, Mycotoxins from the Field to the Table, 119, no. 1–2 (October 20, 2007): 79–83, DOI: 10.1016/j.ijfoodmicro.2007.07.029.
149
Marina V. Copetti et al., “Co-Occurrence of Ochratoxin A and Afltoxins in Chocolate Marketed in Brazil,” Food Control 26, no. 1 (July 2012): 36–41, DOI: 10.1016/j.foodcont.2011.12.023.
150
Saima Majeed et al., “Afltoxins and Ochratoxin A Contamination in Rice, Corn and Corn Products from Punjab, Pakistan,” Journal of Cereal Science 58, no. 3 (November 2013): 446–450, DOI: 10.1016/j.jcs.2013.09.007.
151
Ana-Marija Domijan and Andrey Y. Abramov, “Fumonisin B1 Inhibits Mitochondrial Respiration and Deregulates Calcium Homeostasis — Implication to Mechanism of Cell Toxicity,” International Journal of Biochemistry and Cell Biology 43, no. 6 (June 2011): 897–904, DOI: 10.1016/j.biocel.2011.03.003.
152
Puneet Singh et al., “Prolonged Glutamate Excitotoxicity: Effects on Mitochondrial Antioxidants and Antioxidant Enzymes,” Molecular and Cellular Biochemistry 243, no. 1–2 (January 2003): 139–145.
153
P. Humphries, E. Pretorius, and H. Naude, “Direct and Indirect Cellular Effects of Aspartame on the Brain,” European Journal of Clinical Nutrition 62, no. 4 (August 8, 2007): 451–462, DOI: 10.1038/sj.ejcn.1602866.
154
Tamanna Zerin et al., “Effects of Formaldehyde on Mitochondrial Dysfunction and Apoptosis in SK-N-SH Neuroblastoma Cells,” Cell Biology and Toxicology 31, no. 6 (December 2015): 261–272, DOI: 10.1007/s10565-015-9309-6.
155
Feng-Yih Yu et al., “Citrinin Induces Apoptosis in HL-6 °Cells via Activation of the Mitochondrial Pathway,” Toxicology Letters 161, no. 2 (February 20, 2006): 143–151, DOI: 10.1016/j.toxlet.2005.08.009.
156
N. Hauptmann et al., “The Metabolism of Tyramine by Monoamine Oxidase A/B Causes Oxidative Damage to Mitochondrial DNA,” Archives of Biochemistry and Biophysics 335, no. 2 (November 15, 1996): 295–304, DOI: 10.1006/abbi.1996.0510.
157
James Hamblin, “The Toxins That Threaten Our Brains,” The Atlantic, March 18, 2014, http://www.theatlantic.com/health/archive/2014/03/the-toxins-that-threaten-our-brains/284466/.
158
Химические соединения фтора с другими элементами. Прим. ред.
159
S. Peckham, D. Lowery, and S. Spencer, “Are Fluoride Levels in Drinking Water Associated with Hypothyroidism Prevalence in England? A Large Observational Study of GP Practice Data and Fluoride Levels in Drinking Water,” Journal of Epidemiology and Community Health 69, no. 7 (July 2015): 619–624, DOI: 10.1136/jech-2014-204971.
160
Brenda Goodman, “Pesticide Exposure in Womb Linked to Lower IQ,” WebMD, April 21, 2011, http://www.webmd.com/baby/news/20110421/pesticide-exposure-in-womb-linked-to-lower-iq.
161
Somayyeh Karami-Mohajeri, and Mohammad Abdollahi, “Mitochondrial Dysfunction and Organophosphorus Compounds,” Toxicology and Applied Pharmacology 270, no. 1 (July 1, 2013): 39–44, DOI: 10.1016/j.taap.2013.04.001.
162
Alessia Carocci et al., “Mercury Toxicity and Neurodegenerative Effects,” Reviews of Environmental Contamination and Toxicology 229 (2014): 1–18, DOI: 10.1007/978-3-319-03777-6_1.
163
James Hamblin, “The Toxins That Threaten Our Brains,” The Atlantic, March 18, 2014, http://www.theatlantic.com/health/archive/2014/03/the-toxins-that-threaten-our-brains/284466/.
164
Paul K. Crane et al., “Glucose Levels and Risk of Dementia,” New England Journal of Medicine 369, no. 6 (August 8, 2013): 540–548, DOI: 10.1056/NEJMoa1215740.
165
Rahul Agrawal and Fernando Gomez-Pinilla, “‘Metabolic Syndrome’ in the Brain: Defiiency in Omega-3 Fatty Acid Exacerbates Dysfunctions in Insulin Receptor Signalling and Cognition,” Journal of Physiology 590, no. 10 (May 15, 2012): 2485–2499, DOI: 10.1113/jphysiol.2012.230078.
166
Alan R. Gaby, “Adverse Effects of Dietary Fructose,” Alternative Medicine Review: A Journal of Clinical Therapeutic 10, no. 4 (December 2005): 294–306.
167
Natasha Jaiswal et al., “Fructose Induces Mitochondrial Dysfunction and Triggers Apoptosis in Skeletal Muscle Cells by Provoking Oxidative Stress,” Apoptosis: An International Journal on Programmed Cell Death 20, no. 7 (July 2015): 930–947, DOI: 10.1007/s10495-015-1128-y.
168
Jan B. Hoek, Alan Cahill, and John G. Pastorino, “Alcohol and Mitochondria: A Dysfunctional Relationship,” Gastroenterology 122, no. 7 (June 2002): 2049–2063, DOI: 10.1053/gast.2002.33613.
169
Aiden Haghikia, Stefanie Jörg et al., “Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine,” Immunity 43, no. 4 (October 2015): 817–829.
170
Elan D. Louis et al., “Elevated Blood Harmane (1-Methyl-9h-pyrido[3,4-B] indole) Concentrations in Essential Tremor,” Neurotoxicology 29, no. 2 (March 2008): 294–300, DOI: 10.1016/j.neuro.2007.12.001.
171
C. D. Davis et al., “Cardiotoxicity of Heterocyclic Amine Food Mutagens in Cultured Myocytes and in Rats,” Toxicology and Applied Pharmacology 124, no. 2 (February 1994): 201–211.
172
Satoru Takahashi et al., “Chronic Administration of the Mutagenic Heterocyclic Amine 2-Amino-1-Methyl-6-Phenylimidazo[4,5-B]pyridine Induces Cardiac Damage with Characteristic Mitochondrial Changes in Fischer Rats,” Toxicologic Pathology 24, no. 3 (May 1, 1996): 273–277.
173
Seema Bansal et al., “Mitochondrial Targeting of Cytochrome P450 (CYP) 1B1 and Its Role in Polycyclic Aromatic Hydrocarbon-Induced Mitochondrial Dysfunction,” Journal of Biological Chemistry 289, no. 14 (April 4, 2014): 9936–9951, DOI: 10.1074/jbc.M113.525659.
174
Ioana Ferecatu et al., “Polycyclic Aromatic Hydrocarbon Components Contribute to the Mitochondria-Antiapoptotic Effect of Fine Particulate Matter on Human Bronchial Epithelial Cells via the Aryl Hydrocarbon Receptor,” Particle and Fibre Toxicology 7, no. 1 (2010): 18, DOI: 10.1186/1743-8977-7-18.
175
G. Bounous and P. Gold, “The Biological Activity of Undenatured Dietary Whey Proteins: Role of Glutathione,” Clinical and Investigative Medicine. Médecine Clinique et Experimentale 14, no. 4 (August 1991): 296–309.
176
Naila Rabbani and Paul J. Thornalley, “Dicarbonyls Linked to Damage in the Powerhouse: Glycation of Mitochondrial Proteins and Oxidative Stress,” Biochemical Society Transactions 36, Pt 5 (October 2008): 1045–1050, DOI: 10.1042/BST0361045.
177
Pamela Boon Li Pun and Michael P. Murphy, “Pathological Significance of Mitochondrial Glycation,” International Journal of Cell Biology 2012 (2012): 13, DOI: 10.1155/2012/843505.
178
Poonamjot Deol et al., “Soybean Oil Is More Obesogenic and Diabetogenic Than Coconut Oil and Fructose in Mouse: Potential Role for the Liver,” PLOS ONE 10, no. 7 (July 22, 2015): e0132672, DOI: 10.1371/journal.pone.0132672.
179
Bin Wu et al., “Dietary Corn Oil Promotes Colon Cancer by Inhibiting Mitochondria-Dependent Apoptosis in Azoxymethane-Treated Rats,” Experimental Biology and Medicine 229, no. 10 (November 2004): 1017–1025.
180
Hossam El-Din and M. Omar, “Mycotoxins-Induced Oxidative Stress and Disease,” in Mycotoxin and Food Safety in Developing Countries, ed. Hussaini Makun (InTech, 2013), http://www.intechopen.com/books/mycotoxin-and-food-safety-in-developing-countries/mycotoxins-induced-oxidative-stress-and-disease.
181
Peter F. Surai et al., “Mycotoxins and Animal Health: From Oxidative Stress to Gene Expression,” Krmiva 50, no. 1 (March 10, 2008): 35–43.
182
El-Din and Omar, “Mycotoxins-Induced Oxidative Stress and Disease.”
183
Kunio Doi and Koji Uetsuka, “Mechanisms of Mycotoxin-Induced Neurotoxicity Through Oxidative Stress-Associated Pathways,” International Journal of Molecular Sciences 12, no. 8 (August 15, 2011): 5213–5237, DOI: 10.3390/ijms12085213.
184
Elena A. Belyaeva et al., “Mitochondria as an Important Target in Heavy Metal Toxicity in Rat Hepatoma AS-30D Cells,” Toxicology and Applied Pharmacology 231, no. 1 (August 15, 2008): 34–42, DOI: 10.1016/j.taap.2008.03.017.
185
Elena A. Belyaeva et al., “Mitochondrial Electron Transport Chain in Heavy Metal-Induced Neurotoxicity: Effects of Cadmium, Mercury, and Copper,” Scientific World Journal 2012 (April 24, 2012), DOI: 10.1100/2012/136063.
186
S. Xu et al., “Cadmium Induced Drp1-Dependent Mitochondrial Fragmentation by Disturbing Calcium Homeostasis in Its Hepatotoxicity,” Cell Death and Disease 4, no. 3 (March 14, 2013): e540, DOI: 10.1038/cddis.2013.7.
187
C. B. Devi et al., “Developmental Lead Exposure Alters Mitochondrial Monoamine Oxidase and Synaptosomal Catecholamine Levels in Rat Brain,” International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience 23, no. 4 (June 2005): 375–81, DOI: 10.1016/j.ijdevneu.2004.11.003.
188
A. M. Watrach, “Degeneration of Mitochondria in Lead Poisoning,” Journal of Ultrastructure Research 10, no. 3 (April 1, 1964): 177–181, DOI: 10.1016/S0022-5320(64)80001-0.
189
В 2016 году власти штата Мичиган сообщили, что у 200 детей был обнаружен повышенный уровень свинца в крови в связи с употреблением водопроводной воды в городе Флинте. Прим. ред.
190
James Dykens, “Drug-Induced Mitochondrial Dysfunction: An Emerging Model for Idiosyncratic Drug Toxicity” (Presentation, MitoAction teleconference, Online, 2009), http://www.mitoaction.org/files/Dykens%20for%20Mitoaction.pdf.
191
Sameer Kalghatgi et al., “Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells,” Science Translational Medicine 5, no. 192 (July 3, 2013): 192ra85, DOI: 10.1126/scitranslmed.3006055.
192
Xu Wang et al., “Antibiotic Use and Abuse: A Threat to Mitochondria and Chloroplasts with Impact on Research, Health, and Environment,” BioEssays 37, no. 10 (2015): 1045–1053, DOI: 10.1002/bies.201500071.
193
J. L. Stauber and T. M. Florence, “A Comparative Study of Copper, Lead, Cadmium and Zinc in Human Sweat and Blood,” Science of the Total Environment 74 (August 1, 1988): 235–247, DOI: 10.1016/0048-9697(88)90140-4.
194
Stephen J. Genuis et al., “Blood, Urine, and Sweat (BUS) Study: Monitoring and Elimination of Bioaccumulated Toxic Elements,” Archives of Environmental Contamination and Toxicology 61, no. 2 (August 2011): 344–357, DOI: 10.1007/s00244-010-9611-5.
195
Damian Moran, Rowan Softley, and Eric J. Warrant, “The Energetic Cost of Vision and the Evolution of Eyeless Mexican Cavefih,” Science Advances 1, no. 8 (September 11, 2015): e1500363–e1500363, DOI: 10.1126/sciadv.1500363.
196
Martin Picard, “Mitochondrial Synapses: Intracellular Communication and Signal Integration,” Trends in Neurosciences 38, no. 8 (August 1, 2015): 468–474, DOI: 10.1016/j.tins.2015.06.001.
197
Bernard F. Godley et al., “Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells,” Journal of Biological Chemistry 280, no. 22 (June 3, 2005): 21061–21066, DOI: 10.1074/jbc.M502194200.
198
Cora Roehlecke et al., “The Influence of Sublethal Blue Light Exposure on Human RPE Cells,” Molecular Vision 15 (2009): 1929–1938.
199
M. A. Mainster, “Light and Macular Degeneration: A Biophysical and Clinical Perspective,” Eye 1 (Pt 2) (1987): 304–310, DOI: 10.1038/eye.1987.49.
200
Tim Howard, “Colors: Why Isn’t the Sky Blue?” Podcast audio, Radiolab (WNYC, May 21, 2012), http://www.radiolab.org/story/211213-sky-isnt-blue/.
201
N. A. Rybnikova, A. Haim, and B. A. Portnov, “Does Artifiial Light-atNight Exposure Contribute to the Worldwide Obesity Pandemic?” International Journal of Obesity 40, no. 5 (May 2016): 815–823, DOI: 10.1038/ijo.2015.255.
202
Rosario Rizzuto, “The Collagen-Mitochondria Connection,” Nature Genetics 35, no. 4 (December 2003): 300–301, DOI: 10.1038/ng1203-300.
203
Martin Helan et al., “Hypoxia Enhances BDNF Secretion and Signaling in Pulmonary Artery Endothelial Cells” (Unpublished conference paper, American Society of Anesthesiologists, Anesthesiology Annual Meeting, Washington, DC, October 6, 2012), http://www.asaabstracts.com/strands/asaabstracts/abstract.htm?absnum=3709&index=9&year=2012.
204
Francesco L. Valentino et al., “Measurements and Trend Analysis of O>2, CO>2 and delta>13C of CO>2 from the High Altitude Research Station Jungfraujoch, Switzerland — a Comparison with the Observations from the Remote Site Puy de Dôme, France,” Science of the Total Environment 391, no. 2–3 (March 1, 2008): 203–210, DOI: 10.1016/j.scitotenv.2007.10.009 C. Sirignano et al., “Atmospheric Oxygen and Carbon Dioxide Observations from Two European Coastal Stations 2000–2005: Continental Inflence, Trend Changes and APO Climatology,” Atmospheric Chemistry and Physics 10, no. 4 (February 15, 2010): 1599–1615, DOI: 10.5194/acp-10-1599-2010 Y. Tohjima et al., “Gas-Chromatographic Measurements of the Atmospheric Oxygen/Nitrogen Ratio at Hateruma Island and Cape Ochi-Ishi, Japan,” Geophysical Research Letters 30, no. 12 (June 2003): 1653, DOI: 10.1029/2003GL017282.
205
C. A. Ramos, H. T. Wolterbeek, and S. M. Almeida, “Exposure to Indoor Air Pollutants during Physical Activity in Fitness Centers,” Building and Environment 82 (December 2014): 349–360, DOI: 10.1016/j.buildenv.2014.08.026.
206
Angel A. Zaninovich et al., “Mitochondrial Respiration in Muscle and Liver from Cold-Acclimated Hypothyroid Rats,” Journal of Applied Physiology 95, no. 4 (October 1, 2003): 1584–1590, DOI: 10.1152/japplphysiol.00363.2003.
207
Véronique Ouellet et al., “Brown Adipose Tissue Oxidative Metabolism Contributes to Energy Expenditure during Acute Cold Exposure in Humans,” Journal of Clinical Investigation 122, no. 2 (February 1, 2012): 545–552, DOI: 10.1172/JCI60433.
208
J. Leppäluoto et al., “Effects of Long-Term Whole-Body Cold Exposures on Plasma Concentrations of ACTH, Beta-Endorphin, Cortisol, Catecholamines and Cytokines in Healthy Females,” Scandinavian Journal of Clinical and Laboratory Investigation 68, no. 2 (2008): 145–153, DOI: 10.1080/00365510701516350.
209
Anna Lubkowska, Barbara Dołęgowska, and Zbigniew Szyguła, “Whole-Body Cryostimulation — Potential Benefiial Treatment for Improving Antioxidant Capacity in Healthy Men — Significance of the Number of Sessions,” PLOS ONE 7, no. 10 (October 15, 2012): e46352, DOI: 10.1371/journal.pone.0046352.
210
Hans-Rudolf Berthoud and Winfried L. Neuhuber, “Functional and Chemical Anatomy of the Afferent Vagal System,” Autonomic Neuroscience, Fever: The Role of the Vagus Nerve, 85, no. 1–3 (December 20, 2000): 1–17, DOI: 10.1016/S1566-0702(00)00215-0.
211
Karen L. Teff, “Visceral Nerves: Vagal and Sympathetic Innervation,” Journal of Parenteral and Enteral Nutrition 32, no. 5 (October 2008): 569–571, DOI: 10.1177/0148607108321705.
212
Lulu Xie et al., “Sleep Drives Metabolite Clearance from the Adult Brain,” Science 342, no. 6156 (October 18, 2013): 373–377, DOI: 10.1126/science.1241224.
213
Antoine Louveau et al., “Structural and Functional Features of Central Nervous System Lymphatic Vessels,” Nature 523, no. 7560 (July 16, 2015): 337–341, DOI: 10.1038/nature14432.
214
Cristina Carvalho et al., “Cerebrovascular and Mitochondrial Abnormalities in Alzheimer’s Disease: A Brief Overview,” Journal of Neural Transmission 123, no. 2 (January 2015): 107–111, DOI: 10.1007/s00702-015-1367-7.
215
Xie et al., “Sleep Drives Metabolite Clearance from the Adult Brain.”
216
Vaddanahally T. Maddaiah et al., “Effect of Growth Hormone on Mitochondrial Protein Synthesis,” Journal of Biological Chemistry 248, no. 12 (June 25, 1973): 4263–4268.
217
Guang Yang et al., “Sleep Promotes Branch-Specific Formation of Dendritic Spines after Learning,” Science 344, no. 6188 (June 6, 2014): 1173–1178, DOI: 10.1126/science.1249098.
218
Kristen L Knutson, “Impact of Sleep and Sleep Loss on Glucose Homeostasis and Appetite Regulation,” Sleep Medicine Clinics 2, no. 2 (June 2007): 187–197, DOI: 10.1016/j.jsmc.2007.03.004.
219
Laurent Brondel et al., “Acute Partial Sleep Deprivation Increases Food Intake in Healthy Men,” American Journal of Clinical Nutrition 91, no. 6 (June 2010): 1550–1559, DOI: 10.3945/ajcn.2009.28523.
220
Ryan J. Ramezani and Peter W. Stacpoole, “Sleep Disorders Associated with Primary Mitochondrial Diseases,” Journal of Clinical Sleep Medicine 10, no. 11 (November 15, 2014): 1233–1239, DOI: 10.5664/jcsm.4212.
221
Wendy M. Troxel et al., “Sleep Symptoms Predict the Development of the Metabolic Syndrome,” Sleep 33, no. 12 (December 2010): 1633–1640.
222
Eileen Luders et al., “The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrifiation,” Frontiers in Human Neuroscience 6 (February 29, 2012): 34, DOI: 10.3389/fnhum.2012.00034.
223
“Brain Gyrifiation and Its Significance,” Stanford VISTALAB Wiki, June 8, 2013, http://scarlet.stanford.edu/teach/index.php/Brain_Gyrification_and_its_Significance#Relevance_to_Species_Intelligence.
224
“Meditation: In Depth,” NCCIH, February 1, 2006, https://nccih.nih.gov/health/meditation/overview.htm.
225
Sara W. Lazar et al., “Meditation Experience Is Associated with Increased Cortical Thickness,” Neuroreport 16, no. 17 (November 28, 2005): 1893–1897.
226
Brigid Schulte, “Harvard Neuroscientist: Meditation Not Only Reduces Stress, Here’s How It Changes Your Brain,” Washington Post, May 26, 2015, https://www.washingtonpost.com/news/inspired-life/wp/2015/05/26/harvard-neuroscientist-meditation-not-only-reduces-stress-it-literally-changes-your-brain/.
227
Аяуаска — напиток-отвар, традиционно изготовляемый шаманами индейских племен бассейна Амазонки и употребляемый местными жителями для «общения с духами» для получения практических знаний об окружающей природе и исцеления организма. Прим. ред.
228
Лакьяни, Вишен. Код экстраординарности. 10 нестандартных способов добиться впечатляющих успехов. М.: Эксмо, 2017. Прим. ред.
229
Huiyun Liang and Walter F. Ward, “PGC-1alpha: A Key Regulator of Energy Metabolism,” Advances in Physiology Education 30, no. 4 (December 2006): 145–151, DOI: 10.1152/advan.00052.2006.
230
Martin J. Gibala et al., “Brief Intense Interval Exercise Activates AMPK and p38 MAPK Signaling and Increases the Expression of PGC-1alpha in Human Skeletal Muscle,” Journal of Applied Physiology 106, no. 3 (March 2009): 929–934, DOI: 10.1152/japplphysiol.90880.2008.
231
John J. Ratey and Eric Hagerman, Spark: The Revolutionary New Science of Exercise and the Brain (Boston: Little, Brown, 2008), http://www.goodreads.com/work/best_book/376155-spark-the-revolutionary-new-science-of-exercise-and-the-brain.
232
Mark P. Mattson, Stuart Maudsley, and Bronwen Martin, “BDNF and 5-HT: A Dynamic Duo in Age-Related Neuronal Plasticity and Neurodegenerative Disorders,” Trends in Neurosciences 27, no. 10 (October 2004): 589–594, DOI: 10.1016/j.tins.2004.08.001.
233
Christiane D. Wrann et al., “Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway,” Cell Metabolism 18, no. 5 (November 5, 2013): 649–659, DOI: 10.1016/j.cmet.2013.09.008.
234
Noggin — в английском языке маленькая кружка или сленговое «башка». Прим. пер.
235
Kevin T. Gobeske et al., “BMP Signaling Mediates Effects of Exercise on Hippocampal Neurogenesis and Cognition in Mice,” PLOS ONE 4, no. 10 (October 20, 2009): e7506, DOI: 10.1371/journal.pone.0007506.
236
J. Eric Ahlskog, “Does Vigorous Exercise Have a Neuroprotective Effect in Parkinson Disease?” Neurology 77, no. 3 (July 19, 2011): 288–294, DOI: 10.1212/WNL.0b013e318225ab66.
237
Olga Khazan, “For Depression, Prescribing Exercise Before Medication,” The Atlantic, March 24, 2014, http://www.theatlantic.com/health/archive/2014/03/for-depression-prescribing-exercise-before-medication/284587/.
238
Maggie Morehart, “BDNF Basics: 7 Ways to Train Your Brain,” Breaking Muscle, accessed October 27, 2016, https://breakingmuscle.com/health-medicine/bdnf-basics-7-ways-to-train-your-brain.
239
Kirk I. Erickson et al., “Exercise Training Increases Size of Hippocampus and Improves Memory,” Proceedings of the National Academy of Sciences 108, no. 7 (February 15, 2011): 3017–3022.
240
Neha Gothe et al., “The Acute Effects of Yoga on Executive Function,” Journal of Physical Activity and Health 10, no. 4 (May 2013): 488–495.
241
V. R. Hariprasad et al., “Yoga Increases the Volume of the Hippocampus in Elderly Subjects,” Indian Journal of Psychiatry 55, Suppl. 3 (July 2013): S394–396, DOI: 10.4103/0019-5545.116309.
242
Pamela Byrne Schiller, Start Smart!: Building Brain Power in the Early Years (Beltsville, MD: Gryphon House, 1999).
243
Paul Dennison, Switching On: The Whole Brain Answer to Dyslexia (Edu-Kinesthetics, 1981).
244
Per Aagaard et al., “Increased Rate of Force Development and Neural Drive of Human Skeletal Muscle Following Resistance Training,” Journal of Applied Physiology 93, no. 4 (October 1, 2002): 1318–1326, DOI: 10.1152/japplphysiol.00283.2002.
245
Eino Havas et al., “Lymph Flow Dynamics in Exercising Human Skeletal Muscle as Detected by Scintigraphy,” Journal of Physiology 504, no. 1 (October 1997): 233–239, DOI: 10.1111/j.1469–7793.1997.233bf.x.
246
P. J. O’Connor, M. P. Herring, and A. Caravalho, “Mental Health Benefits of Strength Training in Adults,” American Journal of Lifestyle Medicine 4, no. 5 (September 1, 2010): 377–396, DOI: 10.1177/1559827610368771.
247
W. Kraemer et al., “Endogenous Anabolic Hormonal and Growth Factor Responses to Heavy Resistance Exercise in Males and Females,” International Journal of Sports Medicine 12, no. 2 (April 1991): 228–235, DOI: 10.1055/s-2007-1024673.
248
M. J. Schaaf et al., “Circadian Variation in BDNF mRNA Expression in the Rat Hippocampus,” Molecular Brain Research 75, no. 2 (February 22, 2000): 342–344.
249
Joshua F. Yarrow et al., “Training Augments Resistance Exercise Induced Elevation of Circulating Brain Derived Neurotrophic Factor (BDNF),” Neuroscience Letters 479, no. 2 (July 2010): 161–165, DOI: 10.1016/j.neulet.2010.05.058.
250
Thomas Seifert et al., “Endurance Training Enhances BDNF Release from the Human Brain,” American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 298, no. 2 (February 1, 2010): R372–377, DOI: 10.1152/ajpregu.00525.2009.
251
Roy J. Shephard, “Absolute versus Relative Intensity of Physical Activity in a Dose-Response Context,” Medicine and Science in Sports and Exercise 33, Suppl. (June 2001): S400–418, DOI: 10.1097/00005768-200106001-00008.
252
Hannah Steinberg et al., “Exercise Enhances Creativity Independently of Mood,” British Journal of Sports Medicine 31, no. 3 (September 1997): 240–245, DOI: 10.1136/bjsm.31.3.240.
253
Hannah Steinberg et al., “Exercise Enhances Creativity Independently of Mood,” British Journal of Sports Medicine 31, no. 3 (September 1997): 240–245, DOI: 10.1136/bjsm.31.3.240.
254
Stephen H. Boutcher, “High-Intensity Intermittent Exercise and Fat Loss,” Journal of Obesity 2011 (2011), DOI: 10.1155/2011/868305.
255
Cinthia Maria Saucedo Marquez et al., “High-Intensity Interval Training Evokes Larger Serum BDNF Levels Compared with Intense Continuous Exercise,” Journal of Applied Physiology 119, no. 12 (December 15, 2015): 1363–1373, DOI: 10.1152/japplphysiol.00126.2015.
256
Грэй, Джон. Мужчины с Марса, женщины с Венеры. М.: АСТ, 2018. Прим. ред.
257
Ioana Ferecatu et al., “Polycyclic Aromatic Hydrocarbon Components Contribute to the Mitochondria-Antiapoptotic Effect of Fine Particulate Matter on Human Bronchial Epithelial Cells via the Aryl Hydrocarbon Receptor,” Particle and Fibre Toxicology 7, no. 1 (2010): 18, DOI: 10.1186/1743-8977-7-18.
258
Andrei P. Sommer, Mike Kh. Haddad, and Hans-Jörg Fecht, “Light Effect on Water Viscosity: Implication for ATP Biosynthesis,” Scientific Reports 5 (July 8, 2015): 12029, DOI: 10.1038/srep12029.
259
Arturo Solis Herrera, “Einstein Cosmological Constant, the Cell, and the Intrinsic Property of Melanin to Split and Re-Form the Water Molecule,” MOJ Cell Science and Report 1, no. 2 (August 27, 2014), DOI: 10.15406/mojcsr.2014.01.00011.
260
Ana S. P. Moreira et al., “Coffee Melanoidins: Structures, Mechanisms of Formation and Potential Health Impacts,” Food and Function 3, no. 9 (September 2012): 903–915, DOI: 10.1039/c2fo30048f.
261
Некоторые из упомянутых авторских продуктов можно найти в отдельных интернет-магазинах, осуществляющих доставку в Россию. В остальных случаях руководствуйтесь рекомендациями автора по замене специальных продуктов на аналогичные. Прим. ред.
262
Здесь и далее чашка = 200 мл. Для удобства вы можете приобрести набор мерных чашек. Прим. ред.
263
Joshua J. Gooley et al., “Exposure to Room Light Before Bedtime Suppresses Melatonin Onset and Shortens Melatonin Duration in Humans,” Journal of Clinical Endocrinology and Metabolism 96, no. 3 (March 2011): E463–72, DOI: 10.1210/jc.2010–2098.
264
Joshua J. Gooley et al., “Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light,” Science Translational Medicine 2, no. 31 (May 12, 2010): 31ra33–31ra33, DOI: 10.1126/scitranslmed.3000741.
265
Tim Watson, Electrotherapy: Evidence-Based Practice (Churchill Livingstone, 2008).
266
Mary Redmayne and Olle Johansson, “Could Myelin Damage from Radiofrequency Electromagnetic Field Exposure Help Explain the Functional Impairment Electrohypersensitivity? A Review of the Evidence,” Journal of Toxicology and Environmental Health. Part B, Critical Reviews 17, no. 5 (2014): 247–258, DOI: 10.1080/10937404.2014.923356.
267
Sultan Ayoub Meo et al., “Association of Exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) Generated by Mobile Phone Base Stations with Glycated Hemoglobin (HbA1c) and Risk of Type 2 Diabetes Mellitus,” International Journal of Environmental Research and Public Health 12, no. 11 (November 2015): 14519–14528, DOI: 10.3390/ijerph121114519.
268
Howard H. Carter et al., “Cardiovascular Responses to Water Immersion in Humans: Impact on Cerebral Perfusion,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 306, no. 9 (May 2014): R636–640, DOI: 10.1152/ajpregu.00516.2013.
269
Бреус, Майкл. Всегда вовремя. Узнайте свой хронотип и живите в согласии со своим биоритмом. М.: Манн, Иванов и Фербер, 2017. Прим. ред.
270
Howard H. Carter et al., “Cardiovascular Responses to Water Immersion in Humans: Impact on Cerebral Perfusion,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 306, no. 9 (May 2014): R636–640, DOI: 10.1152/ajpregu.00516.2013.
271
Gabriel S. Chiu et al., “Hypoxia/Reoxygenation Impairs Memory Formation via Adenosine-Dependent Activation of Caspase 1,” Journal of Neuroscience: The Official Journal of the Society for Neuroscience 32, no. 40 (October 3, 2012): 13945–13955, DOI: 10.1523/JNEUROSCI.0704-12.2012.
272
R. C. Loopstra-Masters et al., “Associations between the Intake of Caffeinated and Decaffeinated Coffee and Measures of Insulin Sensitivity and Beta Cell Function,” Diabetologia 54, no. 2 (February 2011): 320–328, DOI: 10.1007/s00125-010-1957-8.
273
Salome A. Rebello et al., “Coffee and Tea Consumption in Relation to Inflammation and Basal Glucose Metabolism in a Multi-Ethnic Asian Population: A Cross-Sectional Study,” Nutrition Journal 10 (June 2, 2011): 61, DOI: 10.1186/1475-2891-10-61.
274
Andrew M. James et al., “Interactions of Mitochondria-Targeted and Untargeted Ubiquinones with the Mitochondrial Respiratory Chain and Reactive Oxygen Species,” Journal of Biological Chemistry 280, no. 22 (June 3, 2005): 21295–312, DOI: 10.1074/jbc.M501527200.
275
Dana E. King et al., “Dietary Magnesium and C-Reactive Protein Levels,” Journal of the American College of Nutrition 24, no. 3 (June 2005): 166–171.
276
Kevin A. Feeney et al., “Daily Magnesium Fluxes Regulate Cellular Timekeeping and Energy Balance,” Nature 532, no. 7599 (April 21, 2016): 375–379, DOI: 10.1038/nature17407.
277
Sean R. Hosein, “Can Vitamin D Increase Testosterone Concentrations in Men?” CATIE — Canada’s Source for HIV and Hepatitis C Information, September 2011, http://www.catie.ca/en/treatmentupdate/treatmentupdate-185/nutrition/can-vitamin-increase-testosterone-concentrations-men.
278
Pietro Ameri et al., “Interactions between Vitamin D and IGF-I: From Physiology to Clinical Practice,” Clinical Endocrinology 79, no. 4 (October 2013): 457–63, DOI: 10.1111/cen.12268.
279
Akash Sinha, “Shining Some Light on the Powerhouse of the Cell — Is There a Link between Vitamin D and Mitochondrial Function in Humans?” (Conference abstract, Canadian Pediatric Endocrine Group Annual Meeting, Montréal, QC, February 22, 2014).
280
Caroline Rae et al., “Oral Creatine Monohydrate Supplementation Improves Brain Performance: A Double-Blind, Placebo-Controlled, Crossover Trial.,” Proceedings of the Royal Society B: Biological Sciences 270, no. 1529 (October 22, 2003): 2147–2150, DOI: 10.1098/rspb.2003.2492.
281
Alexander M. Wolf et al., “Astaxanthin Protects Mitochondrial Redox State and Functional Integrity against Oxidative Stress,” Journal of Nutritional Biochemistry 21, no. 5 (May 2010): 381–389, DOI: 10.1016/j.jnutbio.2009.01.011.
282
U. Justesen, P. Knuthsen, and T. Leth, “Determination of Plant Polyphenols in Danish Foodstuffs by HPLC-UV and LC-MS Detection,” Cancer Letters 114, no. 1–2 (March 19, 1997): 165–167.
284
D. O. Kim et al., “Sweet and Sour Cherry Phenolics and Their Protective Effects on Neuronal Cells,” Journal of Agricultural and Food Chemistry 53 (2005): 9921–9927.
285
Tiffany Greco and Gary Fiskum, “Brain Mitochondria from Rats Treated with Sulforaphane Are Resistant to Redox-Regulated Permeability Transition,” Journal of Bioenergetics and Biomembranes 42, no. 6 (December 2010): 491–497, DOI: 10.1007/s10863-010-9312-9.
286
J. M. Haslam and H. A. Krebs, “The Permeability of Mitochondria to Oxaloacetate and Malate,” Biochemical Journal 107, no. 5 (May 1968): 659–667; B. S. Meldrum, “Glutamate as a Neurotransmitter in the Brain: Review of Physiology and Pathology,” Journal of Nutrition 130, no. 4S Suppl. (April 2000): 1007S–1015S.
287
Cameron Rink et al., “Oxygen-Inducible Glutamate Oxaloacetate Transaminase as Protective Switch Transforming Neurotoxic Glutamate to Metabolic Fuel during Acute Ischemic Stroke,” Antioxidants and Redox Signaling 14, no. 10 (May 15, 2011): 1777–1785, DOI: 10.1089/ars.2011.3930.
288
Francisco Campos et al., “Blood Levels of Glutamate Oxaloacetate Transaminase Are More Strongly Associated with Good Outcome in Acute Ischaemic Stroke Than Glutamate Pyruvate Transaminase Levels,” Clinical Science 121, no. 1 (July 2011): 11–17, DOI: 10.1042/CS20100427.
289
M. Yudkoff et al., “Brain Amino Acid Metabolism and Ketosis,” Journal of Neuroscience Research 66, no. 2 (October 15, 2001): 272–281, DOI: 10.1002/jnr.1221 John P. M. Wood and Neville N. Osborne, “Zinc and Energy Requirements in Induction of Oxidative Stress to Retinal Pigmented Epithelial Cells,” Neurochemical Research 28, no. 10 (October 2003): 1525–1533.
290
J. D. Johnson, D. J. Creighton, and M. R. Lambert, “Stereochemistry and Function of Oxaloacetate Keto-Enol Tautomerase,” Journal of Biological Chemistry 261, no. 10 (April 5, 1986): 4535–4541.
291
Montserrat Marí et al., “Mitochondrial Glutathione, a Key Survival Antioxidant,” Antioxidants and Redox Signaling 11, no. 11 (November 2009): 2685–2700, DOI: 10.1089/ARS.2009.2695.
292
K. A. Bauerly et al., “Pyrroloquinoline Quinone Nutritional Status Alters Lysine Metabolism and Modulates Mitochondrial DNA Content in the Mouse and Rat,” Biochimica et Biophysica Acta 1760, no. 11 (November 2006): 1741–1748, DOI: 10.1016/j.bbagen.2006.07.009.
293
Calliandra B. Harris et al., “Dietary Pyrroloquinoline Quinone (PQQ) Alters Indicators of Inflammation and Mitochondrial-Related Metabolism in Human Subjects,” Journal of Nutritional Biochemistry 24, no. 12 (December 2013): 2076–2084, DOI: 10.1016/j.jnutbio.2013.07.008.
294
Kathryn Bauerly et al., “Altering Pyrroloquinoline Quinone Nutritional Status Modulates Mitochondrial, Lipid, and Energy Metabolism in Rats,” PLOS ONE 6, no. 7 (July 21, 2011), DOI: 10.1371/journal.pone.0021779.
295
Kei Ohwada et al., “Pyrroloquinoline Quinone (PQQ) Prevents Cognitive Deficit Caused by Oxidative Stress in Rats,” Journal of Clinical Biochemistry and Nutrition 42, no. 1 (January 2008): 29–34, DOI: 10.3164/jcbn.2008005.
296
M. Costanzo et al., “Low Ozone Concentrations Stimulate Cytoskeletal Organization, Mitochondrial Activity and Nuclear Transcription,” European Journal of Histochemistry 59, no. 2 (April 21, 2015), DOI: 10.4081/ejh.2015.2515.
297
Oliver Tucha and Klaus W. Lange, “Effects of Nicotine Chewing Gum on a Real-Life Motor Task: A Kinematic Analysis of Handwriting Movements in Smokers and Non-Smokers,” Psychopharmacology 173, no. 1–2 (April 2004): 49–56, DOI: 10.1007/s00213-003-1690-9.
298
R. J. West and M. J. Jarvis, “Effects of Nicotine on Finger Tapping Rate in Non-Smokers,” Pharmacology, Biochemistry, and Behavior 25, no. 4 (October 1986): 727–731.
299
G. Mancuso et al., “Effects of Nicotine Administered via a Transdermal Delivery System on Vigilance: A Repeated Measure Study,” Psychopharmacology 142, no. 1 (n.d.): 18–23, DOI: 10.1007/s002130050857.
300
A. C. Parrott and G. Winder, “Nicotine Chewing Gum (2 Mg, 4 Mg) and Cigarette Smoking: Comparative Effects upon Vigilance and Heart Rate,” Psychopharmacology 97, no. 2 (1989): 257–261.
301
S. Phillips and P. Fox, “An Investigation into the Effects of Nicotine Gum on Short-Term Memory,” Psychopharmacology 140, no. 4 (December 1998): 429–433; F. Joseph McClernon, David G. Gilbert, and Robert Radtke, “Effects of Transdermal Nicotine on Lateralized Identification and Memory Interference,” Human Psychopharmacology 18, no. 5 (July 2003): 339–343, DOI: 10.1002/hup.488.; D. V. Poltavski and T. Petros, “Effects of Transdermal Nicotine on Prose Memory and Attention in Smokers and Nonsmokers,” Physiology and Behavior 83, no. 5 (January 17, 2005): 833–843, DOI: 10.1016/j.physbeh.2004.10.005.
302
Maryka Quik et al., “Chronic Oral Nicotine Normalizes Dopamine Function and Synaptic Plasticity in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Primates,” Journal of Neuroscience 26, no. 17 (April 26, 2006): 4681–4689, DOI: 10.1523/JNEUROSCI.0215-06.2006.
303
David Nutt et al., “Development of a Rational Scale to Assess the Harm of Drugs of Potential Misuse,” Lancet 369, no. 9566 (March 2007): 1047–1053, DOI: 10.1016/S0140-6736(07)60464-4.
304
William K. K. Wu and Chi Hin Cho, “The Pharmacological Actions of Nicotine on the Gastrointestinal Tract,” Journal of Pharmacological Sciences 94, no. 4 (April 2004): 348–358.
305
Rebecca Davis et al., “Nicotine Promotes Tumor Growth and Metastasis in Mouse Models of Lung Cancer,” PLOS ONE 4, no. 10 (October 20, 2009), DOI: 10.1371/journal.pone.0007524.
306
Hani Atamna et al., “Methylene Blue Delays Cellular Senescence and Enhances Key Mitochondrial Biochemical Pathways,” FASEB Journal 22, no. 3 (March 2008): 703–712, DOI: 10.1096/fj.07-9610com.
307
David J Bonda et al., “Novel Therapeutics for Alzheimer’s Disease: An Update,” Current Opinion in Drug Discovery and Development 13, no. 2 (March 2010): 235–246.
308
Narriman Lee Callaway et al., “Methylene Blue Improves Brain Oxidative Metabolism and Memory Retention in Rats,” Pharmacology, Biochemistry, and Behavior 77, no. 1 (January 2004): 175–181.
309
Pavel Rodriguez et al., “Multimodal Randomized Functional MR Imaging of the Effects of Methylene Blue in the Human Brain,” Radiology 281, no. 2 (June 28, 2016): 516–526, DOI: 10.1148/radiol.2016152893.
310
Hani Atamna and Raj Kumar, “Protective Role of Methylene Blue in Alzheimer’s Disease via Mitochondria and Cytochrome c Oxidase,” Journal of Alzheimer’s Disease: JAD 20 Suppl. 2 (2010): S439–452, DOI: 10.3233/JAD-2010-100414.
311
A. Scott and F. E. Hunter, “Support of Thyroxine-Induced Swelling of Liver Mitochondria by Generation of High Energy Intermediates at Any One of Three Sites in Electron Transport,” Journal of Biological Chemistry 241, no. 5 (March 10, 1966): 1060–1066.
312
Laszlo Vutskits et al., “Adverse Effects of Methylene Blue on the Central Nervous System,” Anesthesiology 108, no. 4 (April 2008): 684–692, DOI: 10.1097/ALN.0b013e3181684be4.
313
Murat Oz, Dietrich E. Lorke, and George A. Petroianu, “Methylene Blue and Alzheimer’s Disease,” Biochemical Pharmacology 78, no. 8 (October 15, 2009): 927–932, DOI: 10.1016/j.bcp.2009.04.034.
314
Ana Latorre-Pellicer et al., “Mitochondrial and Nuclear DNA Matching Shapes Metabolism and Healthy Ageing,” Nature 535, no. 7613 (July 28, 2016): 561–565, DOI: 10.1038/nature18618.