Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной (Попов) - страница 192

Принцип работы IceCube аналогичен водным черенковским детекторам. Нейтрино взаимодействуют с молекулами воды, что приводит к появлению заряженных частиц (электронов, мюонов или тау-лептонов), движущихся с высокой скоростью и испускающих черенковское излучение (мюоны могут порождаться нейтрино и не в воде, а при взаимодействии частиц с Землей, но они тоже будут зарегистрированы). Для работы установки существенно, что при высоком давлении, достигаемом на глубине более километра, лед достаточно прозрачен для света. Сеть фотоумножителей, размещенных на кабелях, опускается в скважины во льду на глубину до 2,5 км. Детектор состоит из 86 таких кабелей, на каждом из которых размещено по 60 оптических модулей с фотоумножителями, расстояние между кабелями составляет 125 м, в результате просматривается объем порядка кубического километра.

Существует модификация водного черенковского детектора, чувствительная к нейтрино всех типов. Обсерватория Sudbury в Канаде использует детектор, содержащий около 1000 т тяжелой воды D>2O (стоимость воды составила около трети миллиарда канадских долларов). Эта установка помогла не только окончательно решить проблему дефицита солнечных нейтрино, но и внесла ключевой вклад в изучение нейтринных осцилляций.

Наконец, существует еще один способ регистрации нейтрино высоких энергий, основанный на эффекте Аскарьяна, предложенном в 1962 г. и проверенном в самом конце XX в. в ускорительных экспериментах. Нейтрино, распространяясь с высокой скоростью в среде, порождают каскад частиц, которые становятся источниками излучения, подобного черенковскому. Только в случае нейтрино и, скажем, льда в качестве среды распространения испускаются в основном радиоволны. На этом принципе основано несколько установок по поиску нейтрино. Антенны детектора RICE (Radio Ice Cherenkov Experiment, Черенковский ледовый радиоэксперимент) были установлены над установкой AMANDA, планируется установка новых антенн на детекторе IceCube. А в случае детектора ANITA (Antarctic Impulsive Transient Antenna, Антарктическая импульсная антенна) антенны были расположены на аэростате, летавшем над Антарктикой. Такие детекторы чувствительны к нейтрино самых высоких энергий (выше 10>15 эВ), однако пока они не зарегистрировали ни одного события.

Нейтринные установки позволили решить несколько задач в астрофизике и фундаментальной физике, а также поставили новые. Во-первых, благодаря регистрации солнечных нейтрино было подтверждено, что источником энергии Солнца являются именно термоядерные реакции. Более того, после решения проблемы солнечных нейтрино путем обнаружения существования нейтринных осцилляций (с помощью тех же нейтринных детекторов) и после регистрации нейтрино от pp-реакции мы имеем возможность напрямую изучать темп различных реакций в недрах Солнца. Во-вторых, регистрация нейтрино от сверхновой SN 1987А подтвердила модель коллапса ядра для объяснения этого явления. В-третьих, теперь мы знаем, что существуют космические нейтрино сверхвысоких энергий (хотя пока не знаем, что же является их источниками).