Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной (Попов) - страница 219

15.2. Обработка данных. Big data

Особенность астрономии состоит в том, что всю информацию об изучаемых объектах (если исключить некоторые тела Солнечной системы, к которым можно послать космические аппараты для изучения на месте или для забора и возврата образцов на Землю) мы получаем с помощью излучения. Поэтому обработка данных наблюдений играет очень важную роль. Чтобы узнать что-то новое о физике небесных тел, приходится применять очень сложные методы анализа наблюдений. К счастью, последние десятилетия все данные сразу же регистрируются в цифровом виде, что облегчает работу и дает возможность использовать самые современные численные методы.

Многие красивые астрономические изображения, которые публикуются в популярной литературе, являются результатом сложного процесса работы с исходными данными. Но самое главное – изощренная обработка нужна для получения научных результатов, поскольку многие открытия совершаются буквально «на пределе возможного».

Астрономические данные подвергаются сложной обработке и анализу с использованием передовых численных методов.

Обработка данных на пути к окончательному научному результату может состоять из многих этапов. Сначала нужно по возможности отфильтровать различные шумы, связанные со свойствами как наблюдаемых объектов, так и детектора, т. е. выделить собственно сигнал, который мы хотим анализировать. Сигнал может быть не просто слабым, он может быть ниже уровня шумов, но тем не менее в ряде случаев работа с данными позволяет его идентифицировать и отделить от паразитного сигнала. Далее сам анализ может быть связан со сложной обработкой: поиском периодичности, или поиском сигнала определенной формы (если мы говорим о временных рядах), или идентификацией спектральных линий на фоне априори неизвестных влияний (эффект Доплера, гравитационное смещение, эффект Зеемана и многое другое). Наконец, когда получены научные данные, освобожденные от фоновых шумов, и получены параметры астрономических источников, сложный анализ может понадобиться для поиска корреляций между свойствами разных объектов, для сопоставления данных наблюдений с теоретическими предсказаниями и компьютерными моделями. В частности, отдельную проблему представляет автоматическая классификация объектов и событий при обработке обзоров неба. В настоящее время для этого все чаще используют нейронные сети – обучаемые компьютерные системы, пригодные для решения ряда задач (в частности, для распознавания образов).

Для автоматической классификации астрономических источников применяют нейронные сети.