Почему мы существуем? Величайшая из когда-либо рассказанных историй (Краусс) - страница 59

Но оставим в стороне личные качества. Дирак ни в коем случае не был робок в своей погоне за новым святым Граалем – математической формулировкой, которая могла бы объединить два новых революционных достижения XX века – квантовую механику и теорию относительности. Несмотря на многочисленные попытки, после Шрёдингера (который вывел свое знаменитое волновое уравнение во время двухнедельного загула в горах с несколькими приятельницами) и Гейзенберга, раскрывшего самые основания квантовой механики, никому не удалось полностью объяснить поведение электронов, связанных глубоко в недрах атома.

Эти электроны обладают (в среднем) скоростями, составляющими заметную часть скорости света, и для их описания необходимо использовать специальную теорию относительности. Уравнение Шрёдингера хорошо описывало энергетические уровни электронов во внешних частях простых атомов, таких как атомы водорода, где оно служило квантовым расширением ньютоновской физики. Но там, где требовалось учитывать релятивистские эффекты, оно уже не было корректным описанием.

В конечном итоге Дирак добился успеха там, где все остальные потерпели неудачу, и открытое им уравнение – одно из важнейших в современной физике элементарных частиц – называется, что неудивительно, уравнением Дирака. (Несколькими годами позже, когда Дирак впервые встретился с физиком Ричардом Фейнманом, к которому мы вскоре перейдем, Дирак произнес после обычной для него неловкой паузы: «У меня есть уравнение. А у вас?»)

Уравнение Дирака было красиво и, как полагается первому релятивистскому описанию электрона, позволяло верно и точно предсказать энергетические уровни всех электронов в атоме и частоты излучаемого ими света, описывая, таким образом, природу атомного спектра как такового. Но у этого уравнения была одна фундаментальная проблема. Казалось, что оно предсказывало новые частицы, которых не существовало.

Чтобы сформировать математический аппарат, необходимый для описания электрона, движущегося на релятивистских скоростях, Дираку пришлось ввести совершенно новый формализм, в котором для описания электронов использовались четыре различные величины.

Насколько мы, физики, можем судить, электроны представляют собой микроскопические точечные частицы нулевого, по существу, радиуса. Тем не менее в квантовой механике они ведут себя как вращающиеся волчки и поэтому обладают тем, что физики называют угловым моментом, или моментом импульса, а для краткости – спином. Момент импульса выражает тот факт, что объект, если уж он начал вращаться, не остановится, пока вы не приложите к нему некоторую силу, тормозящую вращение. Чем быстрее объект вращается или чем он массивнее, тем больше у него момент импульса.