Почему мы существуем? Величайшая из когда-либо рассказанных историй (Краусс) - страница 87

у него испускал пару частиц – электрон e и нейтрино n – и превращался в протон p.

В электромагнетизме сила взаимодействия между заряженными частицами и фотонами (определяющая вероятность излучения фотона в точке, показанной на первом рисунке) пропорциональна заряду частицы. Поскольку именно заряд позволяет частицам взаимодействовать с электромагнитным полем, мы называем величину фундаментального кванта заряда – заряд единичного электрона или протона – постоянной взаимодействия электромагнетизма.



Во взаимодействии, которое рассматривал Ферми, вероятность превращения нейтрона в протон определяется численной величиной, которая проявляется в момент взаимодействия, изображенный на рисунке, когда и происходит превращение. Значение этой величины определяется экспериментально, и сегодня мы называем ее постоянной Ферми. По отношению к электромагнетизму численное значение этой величины мало, потому что нейтрон не спешит распадаться, сравнительно, например, со скоростью электромагнитных переходов в атоме. В результате взаимодействие Ферми, описывающее новую фундаментальную силу, стало известно как слабое взаимодействие.

Один из моментов, делавших гипотезу Ферми столь замечательной, состоял в том, что впервые в физике кто-то предположил, что в квантовом мире могут спонтанно возникать не только фотоны, но и какие-то другие частицы. (В данном случае в момент превращения нейтрона в протон возникают электрон и нейтрино.) Это послужило катализатором и прототипом для дальнейших исследований квантового характера фундаментальных взаимодействий в природе.

Более того, этот подход не только объяснял уже имеющиеся наблюдения. Он позволял делать предсказания благодаря тому, что единственная математическая форма, отражавшая взаимодействие, вызывающее распад нейтрона, предсказывала также массу других явлений, которые позже удалось наблюдать экспериментально.

Что еще важнее, это взаимодействие, причем в точности той же силы, управляет аналогичными распадами других частиц в природе. Так, в 1936 г. первооткрыватель позитрона Карл Андерсон обнаружил в космических лучах еще одну новую частицу – первую из тех, многочисленность которых позже заставит специалистов по физике элементарных частиц гадать, кончатся ли они когда-нибудь. Говорят, что при известии об этом открытии физик-атомщик, позже лауреат Нобелевской премии, Исидор Айзек Раби воскликнул: «А это кто заказывал?»

Сегодня мы знаем, что эта частица, называемая мюоном и обозначаемая греческой буквой m, представляет собой, по существу, точную копию электрона, только тяжелее примерно в двести раз. Большая масса позволяет ей распадаться с образованием электрона и нейтрино в ходе взаимодействия, которое выглядит в точности так же, как распад нейтрона, за исключением того, что мюон при этом превращается не в протон, а в нейтрино другого типа (называемое мюонным). Замечательно, что, если при расчете силы этого взаимодействия воспользоваться уже известной нам постоянной Ферми, мы получим в точности верное время жизни для мюона.