Почему мы существуем? Величайшая из когда-либо рассказанных историй (Краусс) - страница 95

В тот период атомное ядро представляло собой воплощенное противоречие и совершенно не поддавалось объяснениям. А почему? Потому, что наша концепция элементарной частицы была слишком узкой. В японском языке такого слова вообще не было, и мы пользовались английским словом, а означало оно протон и электрон. Казалось, откуда-то было принято Божественное послание, запрещающее нам думать о каких бы то ни было других частицах. Думать о чем-то вне этих рамок (за исключением фотона) значило проявлять наглость и отсутствие страха Божия. А дело было в том, что концепция вечности материи была традиционной и брала начало со времен Демокрита и Эпикура. Размышления о возникновении частиц, если это не фотоны, казались подозрительными, и в отношении таких мыслей существовал сильный, почти подсознательный, запрет.

Один из хороших моих приятелей-физиков говорит, что единственными периодами, когда ему удавалось провести сложные вычисления, были периоды после рождения каждого из его детей, когда спать он так и так был не в состоянии, так что проще было встать и поработать. Так в октябре 1934 г., будучи не в состоянии заснуть вскоре после рождения второго ребенка, Юкава вдруг понял, что если расстояние, на котором работает сильное ядерное взаимодействие, должно быть ограничено размером ядра, то любая частица, участвующая при этом в обмене, должна быть намного тяжелее электрона. На следующее утро он оценил массу такой частицы примерно в двести масс электрона. При этом частица, если ею должны обмениваться нейтроны с протонами, непременно должна обладать электрическим зарядом, но не может иметь спина, чтобы спин протона или нейтрона при ее поглощении или высвобождении не менялся бы.

Вы можете спросить, какое отношение все эти тревоги по поводу сильного ядерного взаимодействия имеют к распаду нейтрона – теме, которой началась эта глава и закончилась предыдущая? В 1930-е гг. не только размышления о новых частицах раздражали и вызывали внутренний протест, но и придумывание новых сил казалось занятием в лучшем случае ненужным, а в худшем случае – еретическим. Физики были убеждены, что все процессы, происходящие в ядре, сильные или слабые, должны быть связаны между собой.

Юкава придумал хитроумный способ добиться этого, соединив идеи Ферми и Гейзенберга, а также обобщив идеи успешной квантовой теории электромагнетизма. Если вместо того, чтобы испускать фотон, нейтроны в ядре испускают новую частицу – тяжелую заряженную частицу без спина, которую Юкава первоначально назвал мезотроном, но затем Гейзенберг поправил его греческий и название было сокращено до мезона, – то эту частицу могут поглощать протоны ядра, порождая при этом силу притяжения, величину которой Юкава смог рассчитать при помощи уравнений, экстраполированных им, как вы уже догадались, из теории электромагнетизма.