100 великих научных открытий (Авторов) - страница 122

Просмотрев все снимки, Андерсон заключил, что наблюдаемые космические лучи состоят из положительных частиц — позитронов, которые весят столько же, сколько и отрицательные. Позже выяснилось, что позитроны образуются в электрическом или электромагнитном поле при участии вторичных космических гамма-лучей (возбуждаемых в земной атмосфере первичными лучами — солнечными или галактическими). Причем при рождении каждый позитрон сцеплен в пару с электроном, и заряды у них одинаковые — ведь порции излучения (фотоны) нейтральны, а суммарный заряд должен оставаться неизменным.

В 1914 г., изучая бета-распад, Чедвик обнаружил, что у ядра, выбросившего электрон или позитрон, остается меньше энергии, чем следовало бы. Долгое время физики пытались понять, в чем причина такой неувязки, ведь получалось, что при бета-распаде закон сохранения энергии не соблюдается. В конце концов автор квантовой модели атома — Нильс Бор заявил: в мире микрочастиц энергия сохраняться не обязана. И тут швейцарский физик Вольфганг Паули (1900–1958) рискнул предположить, что энергия истекает из ядра вместе с какой-то незаметной частицей. Поскольку частица не могла быть заряженной, ее назвали нейтроном, но потом обнаружился нейтрон Чедвика с совершенно иными свойствами, и, дабы не было путаницы, итальянский ядерщик Энрико Ферми в рамках подробного описания бета-распада переименовал частицу Паули в нейтрино («нейтрончик»).

Выброс нейтрино объяснял не только потери энергии, но и уменьшение общего количества движения — при этом частица оказалась очень легкой и не способной активно взаимодействовать с другими частицами. Удивление вызывало еще и то, что с солнечным излучением на каждый квадратный сантиметр земной поверхности падает сто миллиардов нейтрино, однако никто этого не замечает. А во второй половине ХХ в. выяснилось, что нейтрино бывают нескольких видов: электронные, открытые Паули, выбиваются вместе с электронами; мюонные же вылетают одновременно с другими частицами — мюонами в процессе распада пи-мезонов.

Собственно, мезон был предсказан в 1930-х японским физиком Хидэки Юкавой (1907–1981). Ученый определил, что не электрические силы держат протоны и нейтроны в ядре, а обмен какой-то третьей частицей (чтобы представить это, можно вспомнить детишек, играющих в мяч: пока идет игра, ее участники не разбегаются). Ядерному «мячику» Юкава дал название «мезон» — «средний», а узнав его массу, понял, что эта частица в 300 раз тяжелее электрона.

Год спустя итальянский астрофизик Бруно Росси выяснил: космическое излучение, которое можно наблюдать на уровне моря, состоит из двух частей. Проникающие потоки частиц способны проходить насквозь через метровые пласты свинца, а ливнеобразующие «попадают в зубы» тяжелых элементов и выбивают множество других частиц, формирующих ливни. По величине заряда, скорости вращения и направлению движения в магнитном потоке проникающие частицы напоминали электроны. Более того, они так же вели себя при столкновениях с другими частицами, вот только энергии теряли гораздо меньше, а следовательно, весили больше.