100 великих научных открытий (Авторов) - страница 123

Чарлз Вильсон (изобретатель камеры, которой пользовался Андерсон) предположил, что, судя по массе, это должны быть протоны, но в проникающем излучении присутствовали как положительные, так и отрицательные частицы. Со своей стороны, Андерсон нашел в космическом излучении частицы, которые в магнитном поле сворачивали с прямого пути не так сильно, как электроны, но круче по сравнению с протонами. Это свидетельствовало о том, что по величине заряда частица сравнима с электроном, а по массе находится где-то между электроном и протоном. Выходит, именно эту частицу и нашел Юкава! — догадался Андерсон и нарек свое открытие мю-мезоном.

Впрочем, прошло всего пару лет, и обнаружилось, что мю-мезон ведет себя совсем не так, как мезон, — в частности, не стремится взаимодействовать с другими «обитателями» ядра и удерживать его от распада. А 10 лет спустя британский физик Сесил Пауэлл (1903–1969) запустил в небо на воздушном шаре светочувствительную пластинку, а после спуска обнаружил на ней следы частиц космического излучения. Изучив следы, Пауэлл идентифицировал частицы, предсказанные Юкавой: они были в 273 раза тяжелее электрона и очень активно участвовали во взаимодействиях. Частице дали имя пи-мезон — чтобы не путать ее с мю-мезоном, а потом оказалось, что последний вовсе не мезон: при распаде он выбрасывает и нейтрино, и антинейтрино, тогда как мезоны излучают что-то одно.

В 1950 г. по продуктам распада был выявлен нейтральный пи-мезон (пион), а мю-мезон между тем получил новое имя — мюон — и славу самой загадочной частицы.

Кварки

К середине ХХ в. ученым удалось отыскать множество новых составных частиц атомного ядра — почти все они существовали недолго, зато взаимодействовали с огромной интенсивностью, рассеиваясь одна на другой и предотвращая ядерный распад. Помимо мезонов, в эту обширную группу — группу адронов — вошли барионы (объединяющие в себе нуклоны — протоны и нейтроны — и тяжелые гипероны), а также антибарионы. Они несли в себе разные заряды, у них различались скорость и направление вращения, но их массы явно были как-то связаны с процессом и продуктами распадов. Физики даже попробовали построить модель адронных взаимодействий, классифицировав их по силе столкновений и рассеяний, однако многие зависимости были введены просто как безосновательные правила игры и остались без объяснений, а соответствующие характеристики расположились хаотично.

О том, что адроны можно разделить на семейства, каждому из которых будет отвечать определенная комбинация общих признаков, научный мир узнал от американцев Джорджа Цвейга и Мюррея Гелл-Манна в 1964 г. Независимо друг от друга ученые определили, что признаков (или степеней свободы, или кварков) совсем немного — всего два, но комбинируются они между собой по-разному, и это очень влияет на общую энергию адрона.