100 великих научных открытий (Авторов) - страница 235

В 1629 г. француз Пьер Ферма догадался, как можно вычислять площадь под параболами, гиперболами и прочими кривыми в системе координат. Метод, которым он пользовался, — сложение энного числа минимальных составных площадей — оказался эффективным еще и для определения центра тяжести тел.

Вообще, каждый математик предлагал свой способ решения конкретной задачи, однако систематизировать эти методы и создать на их основе некий универсальный алгоритм никому и в голову не приходило.

Не думали ученые и о том, что задачи, предполагающие проведение касательных, как-то связаны с нахождением площадей. Да, в XVII в. уже знали, что касательная к окружности перпендикулярна ее радиусу. И даже умели чертить касательные к более извилистым кривым — для этого следовало провести прямую через две ближайшие точки кривой. Но о том, что такое умение может помочь в определении, например, изменений скорости на минимальных отрезках пути или температуры воздуха за минимальные временные периоды, долгое время не догадывались.

Лишь к середине столетия ученых осенило: а ведь упражнения с касательными — это обратная сторона поиска площадей под кривыми. Точки кривой (в частности, графика функции), через которые проходит касательная, указывают на изменение какого-либо процесса за бесконечно малый промежуток времени, а площадь под этой кривой демонстрирует общий результат процесса и складывается из множества минимальных изменений. Путешествуя, мы можем фиксировать скорость движения с интервалом, скажем, в полчаса. Это позволит нам построить график изменения скорости со временем и узнать, как она уменьшалась либо увеличивалась на каждом минимальном отрезке пути за каждый минимальный временной период. Нужно только провести луч через две точки кривой, расположенные так близко одна к другой, что прямая пройдет по касательной. Угол между лучом и горизонтальной осью покажет элементарное изменение скорости (производную). Проделаем эту операцию на всем участке кривой, соответствующем продолжительности путешествия, отмеченной на горизонтали, — то есть дифференцируем функцию. А потом определим полное пройденное расстояние: проведем из каждой точки, обозначенной на кривой, перпендикуляры к временной оси. Вычислим площадь каждой узенькой полоски между отрезками и сложим все значения. Так мы интегрируем функцию. Если построить еще один график по точкам, отображающим показатели мгновенных изменений, то получится производная функция. А ее «прародительница» станет первообразной.

Первым, кто смог связать касательные и площади, дифференцирование и интегрирование, а главное, прописать четкие законы этих процессов на основе уже имевшихся многочисленных алгоритмов, был немецкий математик и физик Готфрид Лейбниц (1646–1716). Именно он придумал значок интегрирования ∫ — от буквы