Диалоги о математике (Реньи) - страница 2
Форма диалога, так удачно использовавшаяся еще в древности Платоном, а позднее Галилеем и многими другими учеными, писателями и философами, оказалась хорошо приспособленной и к обсуждаемым проблемам. Благодаря литературному дарованию автора и прекрасному знанию им литературы и истории книжка получилась весьма интересной.
Имена собеседников в каждом из диалогов знакомы нам из истории науки. Однако в диалогах не нужно искать абсолютной исторической точности. История служит лишь канвой, фоном, на котором так естественно развивается изложение материала. Исторический фон позволяет держать читателя в постоянном напряжении. И никакого Значения не имеет то обстоятельство, что царь Гиерон уже не жил в те дни, когда Рим напал на маленькие Сиракузы. Несомненно, Архимед и Гиерон не вели беседы, о которой мы читаем во втором диалоге. Но она могла бы состояться, поскольку ее содержание, а также высказываемые Архимедом идеи и положения относительно сущности прикладной математики и роли математики в человеческом познании близки духу его творчества.
Сейчас больше, чем когда-либо в прошлом, важно выяснить особенности прикладной математики. К сожалению, даже среди весьма способных математиков, интересующихся лишь абстрактно-теоретическими вопросами, существует своеобразное презрение к занятиям математика-прикладника. Они полагают, что прикладными вопросами способны заниматься лишь бесталанные люди, которые не могут дать ничего полезного абстрактной математике. Это ошибочная и, несомненно, вредная точка зрения.
В диалоге о применениях математики Архимед высказывает очень современные нам и важные мысли о месте и роли математика-прикладника как в познании природы, так и в развитии самой математики. Математик-прикладник — не узкий ремесленник, а творец очень высокого ранга. Ему необходимо не только знакомство с математикой, ко и глубокое знание предмета прикладного исследования. Он должен создать математическую модель изучаемого явления и найти, а в ряде случаев просто изобрести новые методы математического исследования. Последние годы дают нам многочисленные примеры, когда вопросы практики, даже очень узкие и недостаточно четко сформулированные, приводили к созданию новых областей математических исследований и к глубокому преобразованию наших взглядов на содержание и задачи математики. К этому вопросу мы еще вернемся.
В первом диалоге собеседником Сократа — непременного участника всех диалогов древнего философа Платона— является молодой человек по имени Гиппократ. Из курса элементарной геометрии читатель, несомненно, знает о гиппократовых луночках. Гиппократ желает углубить свои знания, и Сократ постепенно открывает ему предмет математических исследований, пути образования математических понятий, истоки которых находятся в непосредственных восприятиях окружающего нас мира. Собеседники затрагивают много острых вопросов, которые возникают как в среде учащихся, так и у тех, кто в своей работе использует математические методы. Например, почему математическое абстрагирование — казалось бы, уход от рассмотрения непосредственного предмета исследования— позволяет узнать о некоторых сторонах изучаемого объекта больше и глубже, чем без этого непременного условия использования математики. Особенно актуален в наше время вопрос, который Сократ задает себе: «…почему ты думаешь, Сократ, что эти методы и доказательства могут быть полезны только для изучения чисел и геометрических форм? Почему ты не попытаешься убедить своих сограждан применять те же самые высокие логические стандарты в других областях знания, например в философии и политике, при обсуждении проблем повседневной личной и общественной жизни?». В настоящее время, когда происходит математизация наших знаний, этот вопрос приобретает специальный интерес. Современная организация производства и торговли, биология и медицина, экономика и военное дело уже не могут оставаться на позициях полуинтуитивных представлений, неполно определенных понятий и нечетко сформулированных вопросов. Когда перед конструктором стоит задача — создать автомат для управления технологическим процессом, для ее решения недостаточно общих идей и представлений. Машина не понимает, что значит фраза «варить сталь до готовности». Необходимы точные указания относительно условии прекращения процесса. Точно так же для автомата, который должен не допускать повышения температуры среды выше заданной границы, недостаточно одного указания о прекращении нагревания в случае аварийной ситуации. С требованиями точных количественных методов описания самых разнообразных процессов приходится сталкиваться буквально во всех областях человеческой деятельности. Крайне важно тщательно анализировать особенности математического метода, особенности математического подхода к изучению явлений природы и процессов, с которыми сталкиваются на практике.