Диалоги о математике (Реньи) - страница 3

Третий диалог дополняет и первый и второй. В нем автор останавливается на важных идеях: о необходимости разработки математических методов изучения движения; о построении математической теории случайных явлений; о невозможности исследования законов природы в отрыве от математики и ее специфического языка. Мысль Галилея о том, что великая книга природы написана на математическом языке и потому прочесть ее может только тот, кто знаком с ее знаками, за столетия, прошедшие со времени Галилея, нашла множество блестящих подтверждений. Сейчас важно подчеркнуть, что по мере возникновения новых задач познания природы само содержание математики не могло оставаться неизменным. Она, как живои организм, развивалась и развивала новые свои ветви. На примере начал теории вероятностей об этом рассказывает Галилей в третьем диалоге.

Действительный член Академии наук Венгерской Народной Республики Альфред Реньи — один из виднейших представителей современной математики в Венгрии. Его научные интересы в первую очередь относятся к теории вероятностей и теории чисел, а также приложениям математики к физике и инженерному делу. В течение многих лет он руководит Институтом математики Академии наук Венгерской Народной Республики и является профессором Будапештского университета. Вскоре после окончания второй мировой войны Реньи почти год работал в Ленинграде под руководством академика Ю. В. Линника.

Математика и история

За тысячелетия своего существования математика прошла большой и сложный путь, на протяжении которого неоднократно изменялся ее характер, содержание и стиль изложения. От первичных представлений об отрезке прямой как кратчайшем расстоянии между двумя точками, от предметных представлений о целых числах в пределах первого десятка математика пришла к образованию многих новых понятий, позволивших описывать сложнейшие явления природы и технические процессы. Из примитивного искусства счета с помощью камешков, палочек и зарубок математика сформировалась в обширную научную дисциплину с собственным предметом изучения и специфическим методом исследования. Она выработала собственный язык, очень экономный и точный, который оказался исключительно эффективным не только внутри математики, но и в многочисленных областях ее применений.

Первичные математические представления были в обиходе у людей на самых ранних стадиях развития человеческого общества. Смутные, неоформившиеся понятия «больше», «меньше», «равно», относящиеся к конкретным предметам, представления о кратчайшем расстоянии между двумя точками, выработанные в результате длительного каждодневного опыта, вооружали первобытного человека полезными сведениями. Вероятно, представления о неравенстве числа предметов, неравенстве расстояний и размеров появились у людей раньше, чем представления о числе предметов. Формирование идеи счета в пределах единиц относится к тому периоду истории человечества, от которого не сохранилось никаких письменных памятников. Это вполне естественно, так как речь, искусство счета, первичные навыки мышления относятся к временам гораздо более ранним, чем появление самой несовершенной письменности. Судить о развитии математических понятий на ранней стадии человеческого общества удается лишь на основе косвенных данных — наблюдений над некоторыми племенами в XVI–XIX вв., изучения особенностей живых и мертвых языков, являющихся не только средством общения, но и памятником духовной культуры прошлого.