Гиппократ. Рассмотрим следующие примеры. Если кто-либо смотрит на город с вершины близлежащей горы, он получает более полное впечатление, чем когда прогуливается по извилистым улицам. Или, когда военачальник наблюдает за передвижением вражеской армии с холма, он получает более четкую картину положения, чем солдат на переднем крае, который видит только то, что находится непосредственно перед ним.
Сократ. Хорошо, ты лучше меня придумываешь новые сравнения, но, так как я не хочу отставать, позволь мне рассказать одну притчу. Недавно я наблюдал, как рисовал Аристофан, сын Аглаофопа, и живописец предупредил меня: «Если ты, Сократ, подойдешь к картине слишком близко, то увидишь лишь цветные пятна, но не увидишь всей картины».
Гиппократ. Конечно, он был прав, и ты тоже, когда не дал закончить нашу беседу, прежде чем мы достигли существа вопроса. Но, я думаю, пора возвращаться в город, так как уже темнеет, а я голоден и хочу пить. Если у тебя еще осталось терпение, я хотел бы спросить тебя кое о чем по дороге.
Сократ. Прекрасно, пойдем и можешь задать свой вопрос.
Гиппократ. Наша беседа окончательно убедила меня, что я должен изучать математику, и я очень благодарен тебе за это. Но скажи мне, почему ты сам не становишься математиком? Судя по тому, как глубоко ты понимаешь окружающую природу и сознаешь важность математики, я догадываюсь, что ты превзошел бы всех математиков Эллады, если бы занялся ею. Я был бы рад пойти к тебе учеником по математике, если бы ты согласился.
Сократ. Нет, дорогой Гиппократ, это не мое дело. Теодор знает гораздо больше о математике, чем я, и ты не сможешь найти лучшего учителя. Что касается твоего вопроса, почему я не математик, я тебе скажу причину.
Я не скрываю своего высокого мнения о математике. Я думаю, что мы, эллины, ни в каком другом искусстве не продвинулись так далеко, как в математике, и это только начало. Если мы не уничтожим друг друга в безумных войнах, мы достигнем прекрасных результатов и как открыватели, и как изобретатели. Ты спросил, почему я не присоединяюсь к тем, кто развивает эту великую науку. Отвечу тебе коротко: я один из математиков, только другого рода. Внутренний голос — ты можешь назвать это прорицанием, — к которому я всегда внимательно прислушиваюсь, спросил меня много лет назад: «Каков источник огромного успеха, достигнутого математиками в их благородной науке?» Я ответил: «Я думаю, ключ к успехам математиков лежит в их методах, высоких стандартах их логических требований, стремлении к истине без малейших компромиссов, в привычке начинать всегда с первичных принципов, с определения каждого понятия, используемого точно и лишенного внутренних противоречий». Мой внутренний голос продолжал: «Очень хорошо, но почему ты думаешь, Сократ, чго эти методы мышления и доказательства могут быть полезны только для изучения чисел и геометрических форм? Почему ты не попытаешься убедить своих сограждан применять те же самые высокие логические стандарты в других областях знания, например в философии и политике, при обсуждении проблем повседневной личной и общественной жизни?» С того времени именно это стало целью моей жизни.