Диалоги о математике (Реньи) - страница 58

Потом он появился в немецком и португальском переводах.

Теплый прием первого диалога как математиками, так и нематематиками поощрил меня продолжить опыт. Второй диалог впервые был прочитан в Торонтском университете в 1964 году и появился на английском языке в журнале «Ontario Mathematics Gazette» и позднее в «Simon Stevin».

Поскольку в первом диалоге я обсуждал отношение математики к действительности только в общем философском смысле, во втором я хотел более детально обсудить применения математики. Казалось логичным выбрать главным героем подобного диалога Архимеда, так как его имя даже в древности было неразрывно связано с применениями математики. Однако исторические рамки второго диалога не позволили мне сказать об этой спорной теме все, что я хотел.

В результате я почувствовал, что надо писать третий диалог, главный герой которого — Галилей, первый мыслитель нового времени, полностью осознавший центральное значение математических методов в открытии законов природы и распространявший свои убеждения с огромной силой. Второй и третий диалоги дополняют друг друга, а также первый. Они существенно отличаются от первого по форме и стилю. Архимед и Галилей, конечно, не используют метод Сократа: вместо того чтобы подвести своих собеседников к тому, чтобы те угадали их мысли, они высказываются сами. Таким образом, я был вынужден обойтись без главного источника внутреннего напряжения, которое присуще сократовскому диалогу. Я попытался скомпенсировать эту потерю, выбрав решающие исторические ситуации, динамика которых неразрывно связана с проблемами диалогов.

Введение образов Архимеда и Галилея позволило затронуть в диалогах более специальные математические темы, чем в первом, особенно те идеи, которые были высказаны в свое время Архимедом и Галилеем. Я попытался в той или иной форме объединить наиболее значительные их достижения.

В этой связи я должен сказать несколько слов о том, как я поступил с историческими фактами. Во всех трех диалогах я пытался избежать разного рода анахронизмов. Я был очень осторожен, чтобы не приписать своим героям такие знания математики (равно как и других предметов), которыми они не могли обладать в то время. Однако и Архимед и Галилей были пионерами, чьи идеи и образ мышления не только опережали их век, но остаются современными даже при измерении их мерами наших дней, поэтому я не отказался от включения в диалоги всего, что считал важным. Конечно, чтобы избежать анахронизмов, я вынужден был ограничивать себя в основном примерами из элементарной математики. Я смог затронуть математику бесконечно малых величин только в такой мере, в какой это сделали Архимед и Галилей. Последнее вынудило меня избежать примеров, которые могли бы оказаться слишком трудными для нематематиков.