.
Ускорение расширения Вселенной подразумевает значительное и неожиданное знание о самом космосе: должна быть какая-то дополнительная сила, которая обеспечивает космическое отталкивание даже в вакууме. Эта сила неощутима в Солнечной системе, не оказывает она и каких-либо эффектов внутри нашей Галактики, но она может преодолеть тяготение в значительно более разреженной среде межгалактического пространства. Несмотря на гравитационное притяжение темной материи (которое само по себе вызвало бы постепенное замедление), расширение на самом деле может ускоряться. И мы должны добавить в наш список еще одно очень важное число, которое описывает силу этой «антигравитации».
Обычно мы думаем о вакууме как о среде, где ничего нет. Но если даже убрать из некоего района межзвездного пространства те несколько частиц, которые в нем содержались, прикрыть его от излучения и охладить до температуры абсолютного нуля, оставшаяся пустота все еще будет хранить в себе какие-то остаточные силы и проявлять их. Это предполагал и сам Эйнштейн. Уже в 1917 г., вскоре после того, как он разработал свою ОТО, ученый начал размышлять о том, как эту теорию можно приложить ко Вселенной. В то время астрономы изучили только нашу собственную Галактику, и естественно было бы предположить, что Вселенная статична: не расширяется и не сжимается. Эйнштейн определил, что, если бы Вселенная появилась в статическом состоянии, она немедленно начала бы сжиматься, потому что все в ней притягивается. Вселенная не могла бы оставаться в статическом состоянии, если только не существовала бы дополнительная сила, противостоящая тяготению. Поэтому Эйнштейн добавил к своей теории новое число, которое назвал «космологической постоянной» и обозначил греческой буквой λ (лямбда). В те времена уравнения Эйнштейна допускали существование статической вселенной, где при соответствующем значении λ космическое отталкивание полностью уравновешивает тяготение. Эта вселенная была конечной, но неограниченной: любой посланный вами луч света рано или поздно вернется и попадет вам прямо в затылок.
После 1929 г. эта так называемая «эйнштейновская вселенная» стала не более чем любопытной выдумкой. К тому времени астрономы поняли, что наша Галактика – это всего лишь одна из многих, а далекие галактики от нас удаляются, т. е. Вселенная не статична, а расширяется. После этого открытия Эйнштейн утратил интерес к числу λ. В самом деле, в своей автобиографии «Моя мировая линия» Георгий Гамов[29] вспоминает разговор за три года до смерти Эйнштейна, где последний назвал число λ «самым большим промахом», поскольку, если бы он его не ввел, уравнения приводили бы к выводу о том, что наша Вселенная расширяется (или сжимается). Возможно, Эйнштейн предсказал бы расширение еще до того, как Эдвин Хаббл открыл его