Маленькая книга о черных дырах (Габсер, Преториус) - страница 48

Всё указывает на то, что решения Шварцшильда и Керра в самом деле являются устойчивыми конечными точками гравитационного коллапса. Когда черная дыра образуется в результате коллапса массивной звезды или когда две черных дыры сталкиваются друг с другом, пространство-время вблизи горизонта, разумеется, не стационарно и имеет множество интересных структурных особенностей. Но все эти структуры очень быстро уносятся прочь в виде гравитационных волн, и геометрия вне горизонта событий приобретает ту идеальную, гладкую, стационарную форму, которая описывается точным решением уравнений поля Эйнштейна. Ситуация внутри горизонта значительно менее определенная. Фактически, несмотря на принципиальное понимание решений Шварцшильда и Керра для внутренних областей черных дыр, то, что в действительности происходит внутри горизонта динамически образовавшейся черной дыры, в целом составляет тайну, которую физики и математики всё еще пытаются разгадать.

Черная дыра, возникшая в результате коллапса массивной звезды, не будет иметь в своем прошлом белой дыры – ее место занимает сама материнская звезда. Не будет там и кротовой норы, ведущей в другую вселенную. Вообще-то, всё еще выглядит таинственным и то, как появились в центрах галактик видимые там сверхмассивные черные дыры. Не исключено, что им могло предшествовать что-то похожее на белые дыры или на кротовые норы, соединяющие их с другими частями Вселенной. Но белые дыры, если они в далеком прошлом предшествовали нынешним сверхмассивным черным дырам нашей Вселенной, вероятно, должны были сильно отличаться от белых дыр шварцшильдовской метрики, так как наше наблюдаемое прошлое (Большой взрыв) довольно сильно отличается от белой дыры Шварцшильда. Также вполне правдоподобно, что сверхмассивные черные дыры образовались вследствие коллапса массивных звезд на очень ранних стадиях эволюции Вселенной, а затем постепенно увеличивались, поглощая окружающее вещество и другие черные дыры, пока не приобрели те огромные размеры, какие мы видим сегодня. В этом случае с ними не должно было быть связано ни белых дыр, ни кротовых нор. Конечный итог таков: имеется множество наблюдательных подтверждений существования в нашей Вселенной областей, содержащих черные дыры, но ни для белых дыр, ни для кротовых нор таких подтверждений нет.

Мы начали рассказывать о некоторых чудесных свойствах черных дыр, вытекающих из общей теории относительности. И теперь есть надежда, что вы понимаете, почему ученым потребовалось так много времени, чтобы прийти к общему мнению о том, что в действительности представляет собой метрика Шварцшильда – даром что она была разработана во всех математических деталях вскоре после того, как Эйнштейн опубликовал свои уравнения поля. Понадобилась большая работа математиков, в том числе получение решения Керра в 1963 году, прежде чем решение Шварцшильда стало играть столь серьезную роль. Критическое значение также имело открытие астрономами во Вселенной объектов, свойства которых не поддавались объяснению в обычных рамках, но вполне соответствовали предполагаемым свойствам черных дыр. И вновь подтвердилось, что вся общая теория относительности не просто математическая конструкция, не имеющая отношения к реальному физическому миру (каковой некоторые считали ее в первые годы после создания). К сожалению, наше современное понимание природы черных дыр выкристаллизовалось в основном уже после смерти Эйнштейна, и он не увидел, к каким поистине революционным выводам привела нас его теория.