Маленькая книга о черных дырах (Габсер, Преториус) - страница 71

В отличие от механизма происхождения черных дыр звездных масс, механизм образования сверхмассивных черных дыр пока неясен – на этот счет не существует общепринятой теории. Одна из возможностей заключается в том, что они зародились в результате коллапса первого поколения массивных звезд, образовавшихся спустя несколько сотен миллионов лет после Большого взрыва (который произошел почти 14 миллиардов лет назад). Первоначальная масса этих черных дыр, должно быть, достигала от десяти до ста солнечных. Но после того как они оказывались в центрах новообразованных галактик, они должны были расти за счет аккреции газа и слияний с другими черными дырами. Трудность этой гипотезы вот в чем: как объяснить наблюдения некоторых очень далеких квазаров, свет от которых, регистрируемый нами сейчас, был излучен всего примерно через миллиард лет после Большого взрыва? Из этих наблюдений следует, что в эту эпоху сверхмассивные черные дыры уже существовали, и значит, гипотеза аккреции/слияния каким-то образом должна объяснить, как они успели вырасти до таких размеров за столь космологически короткое время: каких-то несколько сотен миллионов лет. Другая гипотеза предполагает, что зародыши современных сверхмассивных черных дыр появились во Вселенной в гораздо более раннюю эпоху (или даже и вовсе в ходе того, что мы называем Большим взрывом, а может, и еще раньше). Этот гипотетический класс черных дыр называется первичными черными дырами. В настоящее время нет ни убедительных теоретических механизмов их образования, ни наблюдательных подтверждений их существования.


Рис. 5.2. «Тень» черной дыры. В теории тяготения Ньютона (вверху) лучи света, выходящего из диска вокруг массивного объекта, не искривляются. В этом случае мы видим неискаженное изображение доступной взгляду части диска. Вокруг черной дыры (внизу) кривизна пространства-времени настолько велика, что лучи света сильно искривляются – настолько, что мы видим все части диска, включая те, что находятся за черной дырой. Траектории нескольких из этих световых лучей показаны внизу справа, что позволяет построить изображение, приведенное внизу слева.


Мы закончим эту главу кратким упоминанием одного увлекательного астрономического проекта. Он называется «Телескоп горизонта событий», и в его рамках сделана попытка получить изображения так называемой тени сверхмассивной черной дыры в центре нашей Галактики. Кроме того, с ним планируются наблюдения черного монстра массой более чем в миллиард Солнц в галактике M87, которая расположена относительно близко к нам: на расстоянии всего немногим более 50 миллионов световых лет. Эти две черные дыры выбраны для наблюдений потому, что из всех известных черных дыр их шварцшильдовские радиусы имеют самые большие угловые размеры на небе. Для черной дыры в Sgr A* это объясняется тем, что она находится очень близко к нам (относительно, конечно), а для дыры в M87 – тем, что она такая огромная. Телескоп горизонта событий представляет собой группу больших радиотелескопов, разбросанных по всему земному шару и работающих как единый инструмент. Это позволяет реализовать что-то вроде измерения параллакса: одновременно регистрируя на разных телескопах радиоволны от одного и того же источника в рамках метода, называемого интерферометрией, можно достичь такого углового разрешения, какое было бы у телескопа размером с весь земной шар. Поэтому такие интерферометры способны разглядеть у космических объектов крайне мелкие детали, что и необходимо, если мы хотим увидеть окрестности горизонта черной дыры! Например, угловые размеры горизонта событий источника Sgr A* составляют всего 6 наноградусов. Пытаться рассмотреть такие детали – все равно что различить в телескоп цифры на поверхности серебряного доллара, лежащего на поверхности Луны! Правда, интерферометрические методы не способны обеспечить составному телескопу ту же светособирающую силу, которую имел бы гипотетический телескоп размером с Землю (мы можем использовать только тот свет, который собрали все антенны наших индивидуальных телескопов, вместе взятые). Но для целей, которые мы преследуем, наблюдая Sgr A* и M87, именно разрешающая сила наиболее важна. Конечно, наши телескопы не смогут «увидеть» ни одной из самих черных дыр. Но зато они смогут зарегистрировать свет, выходящий из вихрящихся вокруг них аккреционных дисков. Этот свет (большая его часть) будет следовать геодезическим пространства-времени черной дыры. Но, как мы видели в главах 3 и 4, очень близко к горизонту сворачивание пространства-времени столь сильно, что траектории фотонов будут крайне искривлены, а некоторые из фотонов, прежде чем отправиться к нам, даже опишут несколько оборотов вокруг черной дыры, вблизи ее светового кольца. В результате аккреционный диск будет выглядеть довольно сильно искривленным. Внутренняя круговая часть его изображения, соответствующая области, в несколько раз превышающей размер радиуса Шварцшильда, будет казаться темнее (назовем это «тенью»), за исключением яркого ободка, отмечающего положение светового кольца. Если мы смотрим на аккреционный диск с ребра, ближняя к нам часть диска будет пересекать его «тень». Кроме того, над и под тенью мы, по сути, сможем увидеть часть диска