Маленькая книга о черных дырах (Габсер, Преториус) - страница 72

черной дыры – снова оттого, что в процессе выхода наружу фотоны движутся по изогнутым траекториям.

Глава 6

Столкновения черных дыр

В главах 3–5 мы говорили о черных дырах, находящихся вдали друг от друга, другими словами, об изолированных черных дырах. Нам было важно понять, как звезды обращаются по орбитам вокруг сверхмассивных черных дыр и как вокруг черных дыр образуются аккреционные диски – эти вопросы были и остаются очень интересными, так как именно такие явления наилучшим образом доказывают само существование черных дыр. Во всяком случае, это было так – до тех самых пор, пока детектор LIGO не зарегистрировал гравитационные волны от столкновения двух черных дыр, которое произошло более миллиарда лет назад на расстоянии в примерно столько же световых лет[15]. В этой главе мы расскажем о теории, объясняющей наблюдавшееся событие. Что такое гравитационные волны? Почему сталкиваются черные дыры и почему эти столкновения порождают гравитационные волны? Почему прошло целых сто лет с тех пор, как Эйнштейн опубликовал свою общую теорию относительности, до момента, когда ученые сумели впервые прямо их зарегистрировать?

Столкновения черных дыр – самые мощные явления, какие только возможны в рамках общей теории относительности. Ни в каких других событиях во Вселенной не выделяется столько энергии. Большой взрыв, с которого началась история Вселенной, конечно, был еще мощнее, но для того, чтобы описать начало времени как такового, требуется еще более всеобъемлющая теория, чем общая теория относительности. И физики еще только нащупывают правильный теоретический подход, в рамках которого можно было бы дать полное описание Большого взрыва. Столкновения черных дыр не требуют создания более общих теорий, чем уже существующие: судя по всему, вполне достаточно просто уравнений Эйнштейна, G>µν = 8πG>NT>µν/c>4. Более того, во многих случаях столкновений черных дыр мы, вероятно, можем не принимать во внимание тензор энергии-импульса T>µν, который обращается в нуль при отсутствии какого-либо вещества: полная энергия вещества вокруг черных дыр исчезающе мала по сравнению с энергией покоя самих черных дыр. Следовательно, чтобы описать столкновения черных дыр, нам надо всего лишь решить систему уравнений исключительно простого вида: G>µν = 0. На знаменитой фотографии Эйнштейна он как раз записывает эквивалентную систему R>µν = 0, где R>µν – так называемый тензор Риччи, тесно связанный с тензором Эйнштейна и по сути эквивалентный ему при отсутствии вещества. Правда, на фото (рис. 6.1) Эйнштейн пользуется индексами